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PREFACE

The present volume is an amplification of the Collogquinm{\
Lectures delivered at Amherst in September, 1928, under the
title The Determination Of The Tritangent Planes Of&Phe
Space Sextic Of Genus Four. In order to present, elearly
the eurrent state of that problem a comparison mth‘ the better
known cases of genus two and genus fhree Sﬁems desirable,
Preliminary chapters on algebraic geometry and theta functions
are incorporated in order to facilitate peading by recalling
fundamental ideas of these two subjects™in such fashion as
will be most helpful in later applichtiens.

An important object is the ecgreelation of two series of
memoirs, the one bY‘f‘Y‘@Eﬁ?}‘tﬂ&'ﬂﬁ%ﬁ”ﬁl@othcr by the author.
In the latter series the prg;iei'ties of discrete sets of points
in projective spaces, comgruent to each other under regular
Cremona n‘ansformaqipig}are developed. Such sets irrespective
of the number of ‘pomnts and dimension of the space have
associated groups\which are isomorphic with theta modular
groups. On thé 'other hand Schottky, with the theta relations
as a starting™ polnt defines a few sets of points in terms of
theta qx@ﬁér funétions of genera two, three, and four, These
'tont'h(}ories are unified by the theorem proved herein that
theMséts thus defined are transformed under period trans-

“Pormation of the moduli into sets congruent to the original
set under Cremona transformation.

The extension of the highly developed theory of the bi-
tangents of a plane quartic curve to the tritangent planes of
the space sextic is a matter of obvious interest. The extension
of Aronhold’s algebraic exposition was proposed in 1915 (and
later withdrawn) by the Berlin Academy as the Steiner prize
problem. Wirtinger, Roth, and Milne have discussed a single

quadratic system of contact quadrics which contains 28 pairs
il
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of tritangent planes. In the particular case when the sextie
is on a quadric conc a planar set of eight points serves the
same purpose as an Aronhold set of seven bitangents of
a quartic. The present state of this problem in the general
case is discussed in the last section.

Algebraic curves, swfaces, and correspondences have been
given in the Clebsch-Aronhold symbolic notation. As a rule
this is merely a shorthand device but oceasionally symbotic
calculations are necessary. In a number of cases gvohmtnc
configurations have been defined by algebraic tmms Wwith un-
restricted cocfficients and with variables drawn frdm difterent
domains, The few concepts of group theoyhich constantly
recur are of the simplest type.

The historical side of the subjeet ;ﬁ\qmtc well covered
by the Encyklopiadie article of Ky 1ze1\“ irtinger and by the
Report On Special Topies In Algehta.u Geometry recently
issued by the \Idmmﬂbﬁﬁtﬂ@hﬁ&ﬂy dignincil,  The references
given are mainly for lnrorma’tmual purposes. The coutent of
sections 13, 48, 49, 55, 56 1§ novel. Other new results appear
in sections 28, 32, 33%38 39, 41, 50, 51, 54.

Much of the authdr'® own work has been done as a research
assistant of theNCarnegie Institution of Washington, D. C.
The value of @his comnection as a stimulus to consecutive
research, ant’also the participation of the Institution in the
suppm:t\iti}’this publication, are gratefully acknowledged.

Jatutary, 1929,

NN ArtHrR B. CoBLE.
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CHAPTER 1
TOPICS IN ALGEBRAIC GEOMETRY

1. Linear systems of plane curves. With x,:x :ad™\
as the homogeneous codrdinates of a variable peint z in the
plane, a curve of order » is the locus defined by the equatﬁnn,

ax)t = (o, 1+ o0y 7y + s < }‘~
(ex)* = (ogump+ o0y 3 + s 22)"
_ Z n PR & 4
(1) — (20 43'1 1_2) af:o 'il ig xﬂo _‘L‘ll xﬂz ._‘,\0

\(30“‘]‘31“{‘32 == R},
where ( ?2) is a polynomial coefﬁclént and the actnal co-
0 b3 C2

efficient, «; s, is expressed in terms of the symbols g, @y, ey

by www,dhbr auhbi’ax y org in
(2) % 0, "';*' uo" ap e

The » 41 curves of ‘srdcr n

(Q%", (@ )", - ooy (r )

are linearly indépéndent if the matrix
A\

(3) “\x,\ H agk) . |

of r + rows formed from their coefficients i3 not zero. In
thatcase the aggregate of curves obtained from variable s

\mfn “the equation,
{4) bolopmy + 4 (weaP+ - + A (e 2)® = 0

constitutes a linear system of order n and dimension r. For
r=1,2,8 we call the system a pencil, net, web respectively;
or in general a system {z0%).
The maximum dimension is N—1, N = {n+1) {n-2)/2,
i. e., any linear system of order » is contained in the aggre-
gate of all curves of order ». A linear system of dimension
1 i



9 I. TOPICS IN ALGEBRAIC GEOMETRY

r<< N—1 may equally well be defined as the aggregate of
curves of order n whose coefficients «; ;5 safisfy N—1—»
independent linear relations of the form,

k - . " }
(5) Dl e =0 (ke 0,1, N2,
where again the matrix N
[
(6) H “iu ik I A
2 AN

is not zero, An invariantive statement of the rclyt’ih\n (O is

that the curve, (axx)® = 0 of order n is apolar fifhe curve
L2

Wbl =s 0

-
Nd S =
iyl o T T

(M) (@8 == (a,E,+ a5+ &) = Z‘ai
2.\\:

of class =, i. e, the simultancous intdriant (5), or {ca)*

vanishes. Thus with every linear system of dimension r<Z N 1

and order n there is associated a.Nnear system of dimension

N—2—yr and clﬁ‘%g"-ﬂf""a““}?{“""y-m‘g-i“

&) bla &)+ h{a ;‘-)”"-F:{} . by lirxnog_p P == 0,

such that each sys,tzé‘@contains all the curves apolar to every
curve of the othef> We say that the two linear systems are
apolar. Their matrices, (3) and (6), are also apolar, i e., the
row-product™d). formed for any row of the one with any row
of the Q@iér, vanishes. A theorem of Grassmann®® (ef. 17 T,
P 15&§St’ates that the determinants with proper signs formed
frcmft e sets of #+1 columns of the one matrix are pro-

_. portional to the determinants formed from the respective

\\ Jcomplementary sets of N —# —1 columns of the apolar matrix.
It is the values of these determinants, values subject, for
0<r<N-—2, to certain quadratic relations, which charac-
terize the linear systems rather than the particular curves
gelected for their expression in (4) and {%).

A particular type of apolarity relation serves to express
the conditions that all the curves of a linear system may
have the same behavior at a given point called a dase-point
of the system. If the apolar linear system contains a linear
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system whose curves consist of a point, (%) = 0, repeated
n—k-+1 times together with an arbifrary curve of elass b —1,
say (&)1 =0, then (b&)»*+1.(cE)*! is apolar to every
eurve (ax)® of (4), i e. (@b %+ (ac)*—1 = 0 for every choice
of ¢, or (eb)» %+ (w1 — 0. This imposes, for given b,
k{k+1)/2 linear conditions on the coefficients e which for
the particular choice of b= 0:0:1 are obviously independent{
The conditions express that the curves « have a A-fold ;[}.P‘iQt
at b, The produet of the k tangents is («b)** (ex)ie="0.
If in this we set x=1V,0",.-. we obtain fur@];gar“]incar
conditions om the e’ which express that brancheé" of the
curves « at b have the fixed directions b¥, I;IK,‘

A linear system which contains ol the ewives of order »
which have a given base, B(bf‘, bi}, Zéd) 1. &, which have
at the point b; at least a k:-fold point,3¥ said to be complete;
otherwise incomplete. The apolarity¥relations which define
a complete system implg' that «derfain intersections of two
members of the s_‘}"\s“'t‘é'hcll ﬁglél.fv]ﬁ:\?&f.‘orgﬁﬁ'e limiting cases for
which one or more of the:'.tiase points approach a given
base point aleng a givem curve are included. Thus if bt
approaches b;‘* alongga.,\given line, the curves have a k-fold
point at b, with *his given line as ome of the ks tangents.

Two theorems »f Bertini® are useful. The first states that
if the general¥enrve of the system has a %-fold point variable
with the ¢livVe then all the eurves of the system have a fixed
(k—l)%l\d“part; the second that if the general curve is
degenerite then either all the curves have a fixed part or
each* is made up of % variable members of a fixed peneil.

\MH" we assume that a common part has been removed from
the members of the systemn and that the curves then are not
composed of members of a pencil we may conclude that the
general curve of the system is irreducible apd has no multiple
points outside the base points of the system. Unless definitely
stated otherwise we will consider only systems of this latter
character, and these will be termed proper.

Let then a complete linear system be defined by a given
hase, B(b;f, cary b_f-’). The dimension r of the system is given by

1*
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9 ;o= spFln48)—2 i+ D)2

where s, is the number of independent relations among the
limear conditions imposed by given I3 on eurves of order 1,
If s, == 0 the system is regufrer, otlerwise wrregulor with
oregularily (superabundance) s. It may Dbe proved that
s, == 0 for sufficiently large = (*' p.b3). Let the grade D
of the linear system be the number of variable intersections
of two general enrves of the system. Then allowing fox'the
fixed intersections at B we have O

Ny

(10) —2.

7

If alss p is the genus of a general carvedf t\h( system, then

(an p o= [ 1) (0 2) — Dby — 1) 2

Thus », 1), p are connected by thé\relation

(12) W\ar{;r.d'_ﬁra{i)lgi?g{:?fo}‘g_hﬁq“ :
The members of a iinearjsiy’s'tem which pass through a point 7
of the plane in general’position constitute a new linear system
(1), If the new system has acquired along with P the
base peints P, °Bh, ... Pr then the poimts of the plane
divide into sets)each of ¢ points such that any curve of the
system which/passes through one point of a set must also
pass thréugh the other points of the set. If £=1 the system
is temie{ simple; if 11 not semple. But simple or not there
is hut one curve of the system on » points in general position;
:and “conversely if an algebraic system of dimension » is such

\ ythat it contains but ene curve on » points in general position

then it iy a linear system (% p. 12, pp. 15-24; *! pp. H6-5H7).

2. Mappings determined by linear systems. Given
a proper linear system {C,! of order % and of dimension
> 2 we geleet v+ 1 independent curves and set

(1) QYo = = (ay T, Gy = (e ), . s ety = (o)t

We interpret y,:9.:--.:y as the homogeneous codrdinates
of a point » in a linear space S, and have for each point =
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of the plane which is not a base point of |€}; a point y
of 8. Since the curves of | (] are not composed of members
of a2 pencil, the point y will run over a manifold M, of
dimension two in S, If g9:--- : 4 are dual cotirdinates in

r
¥ lies on the S,y 5, if = is on the curve, X' ¢, (¢, ) = QF
i—0 -

of |Cn'. Thus the linear sections ¢ of 3, arise frome (the
curves of the planar system. The order of if, the nitmh’er
of variable points in which it is met by an 8,_, defihed by
y, 5, is the number D of variable intersectiph®x of two
eurves provided |Cy| is simple; otherwise is"’l};’t. Castel-
nuovo * has proved that if £2>1 the setg“¢f'¢ poinis = may
be put into one-to-ome correspondence With the peints &' of
a plane. Thus in all cases the poip.t’-fsx\J of M, in 8, are in
one-to-one or birational correspondence with the points of a
plane and 3, is Jxl}ey%fp;gulibré’fiﬁg}gﬁn surface in S,. If
conversely such a rational smfice is given with points y in
rational correspondence with points « of a plane, its linear
sections » determine a{proper linear system in the plane.
We observe that g#he codrdinates y in (1) are fixed by the
choice of 1 i,na‘ependent enrves of || and the choice
of a faector of preportionality in each. If the given choice
is altered, thia)point x determines a new point 3/ which arises
from y by dinear transformation or collineation. If on the
other ‘}Qirﬁ. we carry ouf in the plane a collineation which
carries® z into 2’ then («;x)* becomes («fa’)* and the point
PR ’ghi'Ms determined by 2 is the same as that determined
\lf:}-' x sinee gy = (o) = (aia’y*. Thus the relation
between A, and the linear system || is definite only to
within projective transformation both in 5. and in the plane.
We extend this later to Cremona transformation in the plane.
In the birational relation between the plane = and M;(y)
there are two kinds of exceptional points, We consider only
the case of gimple linear systems. The first type is a k-fold
base point b. Setting b in (I) the codrdinates ¥ vanish and
the point y is indeterminate. I.et ¢ be a general point and
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let = appreach » along the line J¢ i.e. let 4 approach ¢ in
h4Ae. When we set x = Db-F2¢ in (1) the terms in 2
vanish up to the degree & since (e by F11 (a2 — 0.
The terms in A* remain and higher powers of 1 may be
dropped. Thus gy; == (¢; b % (s c)*. Tf now (g y) = 0, the
point ¢ is on a tangent to the curve X g;{e; o) =10 at
its k-fold point .  Hence all sections g of My on y correspand
to curves of ;¢! with a fixed tangent at & in the difcation
be. As ¢ varies along a line e-+4¢" not on 4, the g-.rl&dihal:os
y; are expressed as rational functions of degete\’t in the
parameter 2 and the peints ¢ which cm‘resptmdz%n the varinus
direetions at ¥ run over a rational curvedun M, of order /.
It may happen however that the diré¢tions at b divide
into %! sets of f each such that any'/éurve o which passes
through b with one divection 9 % set of / must have
branches in each direction of the” set. Then the rational
curve on M whiﬂbucdlt‘m&;l@dﬁwg;he directions at & iz 2
t-fold curve of order k,, where k == tk;,. We call these base
points the fundamental or F-points of the rational trans-
formagion (1); and the rational eurves which correspond to
directions abhout 'im,’ the corresponding principal ov P-chrves.

The secondAtype of exceptional point lies on A, and
ocenrs whed/sthe linear system |C,' has in the plane a
P-eurve jj.\ieq’a curve which mecets the curves of the system
only thifbh’e base points. If x is on the P-curve the system

#

(=&Y of |Cs| on 2 contains the P-curve as a factor and

'théi”residual variable part {C,| will meet the P-curve in %

\”\;Yﬁriable points. Since |Cx| is the same for all positions of

x on the P-curve the surface M; has a A-fold peint corre-

spending to the P-curve in such a way that the oo ! directions

at the #%-fold point correspond to the oc® points on the
P-curve,

The simplest example of M, in S, is the guadric in S,
the map of the plane by the complete system of conics |Gy |
on two base points, B{b, b;). The line of the pencil on b,
with parameter ¢{ is cut by [C:| in one variable point and
thus maps into a generator { of the quadric; similarly the
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lines on b, map into the cross generators ¢ of the quadric.
If 4, v, are the parameters in these respective pencils of
the P-curve, b, b., then direetions at #;, have a variable £ but
common 7,. Thus the F-points b,, b, map respectively into
the generators =, ¢, which are the P-curves on the guadric.
Points on the P-curve b b, have parameters f, v, and map ,
into the intersection I? of the two P-curves on the quadric.
The transformation is reversed by projection of the quadnb
upon the plane from P The generator ¢z, on £ cuts the
plane at b,; ¢ on P at bs. The directions at P in thé~tangent
plane project into points on &, b, A general Kli’ne section
prejects into a conic on &y, bs. O
3. Linear systems (r = 2, D) == 1); Otemona trans-
formations. If (| is a proper net férywhich D=1, if
€ is a general irreducible eurve of theynet, and C7, € two
other curves which “ith ¢ define the’net, then  is but by
the pencil '+ 10 in. @bguﬁk}g@rb}glmpomt and therefore
is rational. Moreover the m%t is a complete system. For
it ¢ were a further 111derrendent curve with the same be-
havior at the base pmnt “a member of the net C'+A 0" 4-u ¢
could be determmed\ith two variable intersections, and there-
fore a part common, wWith €', From the relationr=D—p-+41-4s,,
valid for cmnplet& systems, in which »r =2, D=1, p== 0,
we find that sn = (). Such a net defined by the regquirements
that the gederal curve is irreducible, and that+ =2, D=1
is railed}homulozdaz
Letathe homaloidal net in S: be defined by its hase points
P} D, - - -y po Of orders 71, g, ---, 7. From the values of p
“and D as in 1 we find that

) R T R Y e e el T
o ontrate e = 3n—1).
The mapping _
(2) v = (@) (=01, 2),

is now from point x of S; to point y of the plane M} or
Sy. The lines, (yy} = 0, of S, are in projective corre-
spondence with the curves, X #; (; z)* = 0, of the homaloidal
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net. To the variable intersection y of two lines #, %  in
Sy there corresponds the variable intersection » of the two
corresponding curves of the net. The transformation thus
established hetween the points of the two planes——valid through-
out exeept for a finite number of points—is called a Cremona
trangformation T. For proper choiee of integers n, »;, ¢ the
pet in S, is determined when the ¢ base points are selégted.
Tie projectivity with lines in 8y invelves no new(ahsolute
constants, Thus 7 depends upon 20 —38 a-bsnlut-g'\pl‘“ojec-ti\'e
constants. A\

Lines in Sy are mapped into rational cﬂr\es of order »n
in Sy which in general are irreducibles Thebe curves con-
stitute an algebraic system of dimensian two sueh that on
two generic points ¢ there is a smg%’ curve of the system.
Thus the system is a preper petsfor which » == 2, D= 1,
i.e. a homaloidal net in proje'c?;iire correspondence with the

lines of 8». We 1maF. then: wggg(@ in the form
(3) ‘ﬁl - (ﬂ& J)R (3 === 0} IJ‘ 2)

If this net in Sy hashase points g1, .-+, g6 of ovders s, .-, 5, then

T has 20—8 \é\bsolute progectne constants \\hence g=9,
As before
@ A@ ATEE g =,

g\'ﬁ sitset --- 85 = Bln—1).

\VQ('&H Py -+, P the fundamental poinis or Fpoinis of
the transformation 7' from Sy to Sy; and similarly ¢, ---, ¢o

" "\ the F.points of the inverse transformation 71 from 8y to Se.

\'"s

As in the more general mapping of 2, directions at the
F-point p;{i=1, ..., ¢) of order »; in S, correspond to the
points on a P-curve, P, of order r; in S,. To the pencil
of lines on p; there corresponds in 8, a pencil of variable
rational curves of order n—7#; each taken with the fixed
part. P; which is cut by the variable part in the point which
corresponds to the direction at p; on the variable line, Thus
a P-ewrve in 8y is the fixed part of a degenerate peneil of
the net in S,. Conversely the points of such a fixed part
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must correspend o a single point — necessarily an Fopoint —
in 8. The orders also of such fixed parts determine the
orders of the F-points in &, Thus either net once given
determines the nature of the other met as well as (for » =~ 2
and ... ¢ =>4} the position of the F-points of the other net
when four of these have been chosen.

Let the P-eurve I in 8, which corresponds to the Flpoint
pi in 8¢ pass through the Fpoint g; (5 =1,-.-,¢) i 8, O\
with say oy branches. Then there are oy dlreutmm ats -
q; which correspond to directions at p;. Hence the P-cm'ye,
@;, in 8. which corresponds to direetions at ¢; in, bg aJso
passes e« times through p; .\

When the F-poivts of T and 7" are in genem] p051t10n
the P-curves have the following plopcmea\(a) they are
rational; (b) they have multiple points oply™ at the Flpoints;
{¢) they are completely determined by €heir behavior at the
F-poiuts; {d) they meet the generaltéurve of the net ounly
at the Flpoints; {e) they %%&bé‘ﬁ%ﬁiﬂﬂ’f@i O5RIP at the Fl-points;
and (f} as an aggregate they make up the jacobian of the
net. The last of these follows¥rom the fact that the jacebian
is the locus of double ,foits of curves of the net. The
others are immediate c}ﬁ%quences of praperties of T or of
the relations 3 (4),"

4. Further relétlons on the integers u, »;, g, wy as-
sociated w1t.[k\T With reference to a given Cremena
transtormat@ T and a given set Py of m diserete points
P1s -5 Pey ¥ -y Pm I Sp of which the first o are the &+ pumta
of ,Zj,:"é.'riy given curve (), has a ,singularity complex®
(S.‘Ka}l'i;or, 7 pp. 293-316) which consists of the set of integers
(positive or zero),

Yo, ¥i, o0y Yoy Yeb1s o0y T

where yo is the order of C; y1, ---, 7o the multiplicities
of € at the F-points py, ---, py of T and yo 1y 2oy I the
multiplicities of ' at the m-—¢ further points of Py which
are crdinary points for 7' but which for some veason or other

we may wish to notice:
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The curve €l is then transtormed by 77 into a enrve €5 i
N, with the singularity eomplex

" K o ’ ar
‘“J:)],‘...',?, ):J:]-"'-J:--

with respect to a set of poinls o of w0 points i Sy of
which gr. o go are the Fpoints ol 7 5 amd g, 00 - gw
are the correspondents or Apages under T oof the ordisary
POINts po 1. oo pan Again o i the ovder of Cionid )
(7e= 1, --.. m) the multipliciiy of 220 at g, THW planar
stz of points I’;f-i_. (},'fl st related thiat ¢ pniug;«é‘jn carh T
will serve for Fipoints of 7 awd 7' vesyd@hively while the
remaining @ — ¢ points of cach set aredehrresponding pairs
of T and 7't will hereafrer be ,uaid\r}) Ve congricend sils of
painte wnder T \\
A line is transformed by 7 iuf{);\;i cirve of ovler » with
a point of ovder s at g5 (j = Nooooe)n These orders are
maltiplied by y, for the Gagsmpfif .- of orider ;. However,
for ecach branch of (J’,;,_-,}fhrf;ug‘ll pi the cuvve [ separades
from the transform.. M ordinary corresponding paivs the
behavior of (% andNts transform is the sawe.  Hence the
singularity eo exes  and ¥ of £, and Choare conneeted
by the lneapNfransformation S

o W

:’:)’5 = Ryu—— 1§ T e TTRiFE T e T a i,
(I) 'Q:;\ J’j’ T e Y e e it s T (g P
’.{\ M ?’:J{—Ic = Yok
‘:';; U- == 1, ---, g; E =1, .- m— gk

Tt is clear that two curves (., £, with complexes y, ¢ will
have the same number of interseetions outside the set 7%, in 8
as their transforms have outside the set Qn in Sy, i. e

}'f{l 66 '—'J’{ l:31 ST "_"Y;n, ;'n - ?’0 (j!! - J/L {ji_’_ DU £ dm-

Thus & has the invariant quadratic form

(2) €= ag—ri—ri— iy (m 2 o)
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Moreaver the genus of € ix invariant uonder 7 wheuce

'

(o — 1) o — 2} 3 /; {r; — 1) is invariant. DBy combining

this witl (2) we ﬁnd th(’ invariant linear form

(3} L=3p—pn—i—" " ~¥u (i = o).
O\
As an casy algebraic consequence we have A .
A

(A1 The favavience under the lnear tremsformution S of t\@»
Jorms Q. L furnishes the following relations on ﬂ{exm—
fegers (positive or 2ev0) e, 14, Sty associufed 4 e

Cremone transformation 1 ,\\
\:"‘3
D = opt— N —N\\Y
P iz E, 2”, ¥ ___\jf 1,
. 1 7 7 . )
2 o=3—1, 2y (BB,
3 Y S IR\ @ s
Z‘_’: «; == 8 1, ZJ. NN r24-1,
Z;’ i = B&—1, 2‘ ‘(“U = 3r—1,
www.dbr auhgkary org.in_
Z: fegp ¥ = A8, ST Wi,
N )
g § L] gl == 8 Siy \ A—f.,r PR TR PR
Geny 1, e
1€ : :

The integers 2, (01 2, 3) are subject also to a series of
inequalitics, whih,“when the % are arranged in order of
magnitude, \

ANV e 2ors e 2 b,
take rhe ?(«mm
. 3, YT P I
~O R O (RRR e
(}ﬁ' B T2y fracE e
B Zm oryhrecb-ty

These express respectively that the net does not necessarily
contain as a faetor the line p pe or say the curve (12)',
nor the curve (123456)%, nor the curve (1% 234H67)%, nor the
curve (128456789)% ete. The first case of numbers #, #;
which satisfy the two relations 3(1) and which is ruled out
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by (DY ds s == Dy ¥, -5 o B8, 1,010 Whether the
equalities 3 (1) and the inequalities (3) ape =ufficient to vnsure
that further integers s;, e; can be determined which satisiy 4),
and whether the satisfaction of equations (4) is suflicient to
ensure that o transformation 77 with the eorresponding set
of integers exists, are questions not yet auswered,

A variety of properfies of this set of integers assoeidfed
with 1" have been given by Clebscl, Bertini, _\]{)llll‘\dll‘fk and
others (™ Chap. TV, 8§ 1, 2). O

5. On the nature of the Cremona group and its
invariants. [f 7 is a Creemona transforng ltmu fPom ]mml
to point ', 7% ancther from point o m;»‘,fi{.r Ly all in
the same plane), the product 7% 7%, BN Cremona transe
formation from 2 to »”. The totaliggyet all Cremona trans-
formations fn the plane (ineluding\as particulav cases the
projective tl‘anbfornlatimlﬂ cons{itiite the Cremona group in
the plane. . Kantor?” du('ribes this group asx one whose
elements contan}"“@{ﬁ‘wh?uLﬁ%ﬁ%?{nnﬁw parameters ¢, iy, - - -
and certain discontinuons harameters e, ¢y, - - -1 each set of
parameters being infiite in number.  The parameters ¢ vary
with the fype of ,L3° We say that two transformations with
integers =, ?'; and" ', i are of ditterent type if n 4 'y or if
when n = wiMhe »; are not merely a permutation of the iy,
When the type Is fixed the continucus parameters « of that
type vary with the choice of the direct and inverse F- points
snbg@ to the 20 — % relations which connect them. We
obmm in the next two sections a separation of these two

3:}3995 of parameters in so far at least as coneerns certain

e’

sub-aggregates of the Cremona group.

The Cremona group in the plane is more amenable to general
treatment than the similar group in higher spaces as a con-
sgquence of the theorem of Noether (ef, % Cap, IV, 7) that 7
can be expressed as a produet of guadratie transformations.
Perhaps a simpler statement ix that the Cremona group can be
generated by collineations and a single involutorial quadratic
transformation 4.3 with F-points at p,, ps, ps and P-curves,
FPo=pim (0 = 1,2,3).
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There i3 no simple basis for an invariant theory of the
Cremona group. It is evident that a linear system, [
of curves is transformed into a linear system 'y, with fhe
same . £, . But these numbers are merely arithmetic in-
variants of the system. Twe systems with the same in-
variauts », £, p are not usually conjugate under the Cremona,
growp. But a complete linear system defined by a base I i3
transformed by 7 into a complete linear system defined \by
a base B’ and the two sets of points B, B (with the inksion
perhaps of base peints of zero ymltiplicity) ave (.'f)-}e.‘g?:zr‘r?i’i.t trnder
T as defined in 4. Thus the planar sct of m pointeh(D---. P, OF
P:'fa,, usually diserete, as the carrier, actual giigténtial, of an
infinite varicty of complete lincar systemgyseems a natural
hasis for an invariant theory. This 110t.iok‘{g.?}lf recur frequently.

A complete Jinear system, definedMids set Ph, consists of
a continnons aggregate ot curves. .}\:"&' shall have occasion also
to discuss the disc%n\gi\zfl}hq:}}_% 3 aaéélz.'@tr%tlg % prineipal eurves or
P-curves (of. 9, 56) defined % /%, ah aggregate which s
infinite for m = 8. N

6. Types of Cremdna transformations. The arith-
meti¢ linear groqia,’g,u,g. It the set of points Pj, is con-
gruent to the set.bf points Q.,'T:-h under T, and if Q;i is eoh-
eriuent fo R‘;’W“ﬂndm’ Te, then Pl oand A, are congrueit
under the ;f{iduct T T, A curve £ with complex ; at P,
passes mpddy 74 into a curve Oy with complex y at ¢, and
this wader 7% into a curve C7 with complex ;' at R, Then
is expressed linearly in terms of y by & (4 (1)), v in terms
~af.3 by Sy, and y’ in terms of y by the product 8 S.. The
Nolass of all planav sets @, congruent to a given sct L5 has
the property that any two members of the elass are congruent
under a definite transtormation T, localized by the two sets,
with its ¢ =2 m direct and inverse F-points in the two sets.
These transformations 7' regarded ag planar transformations
constitute a growpoid (cf. ® p.5) rather than a group, ie.
elements 7' defined by P, (0 and 7' defined by P, (i
have a product 77" defined by P 0r only when P oeo-
incides with ..
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The elements & however are merely deseriptive and are
mdependent of the poxition of the sets of points. 1f m s given
they eonstitute a gronp which expresses the various woys iy
which curves or linear systems of covves deliued at one sot
of e points may be fransformed into similar systene detined
al another set of e points, We eatl this gronp of JAwear
transformations with integer cocflicients, the group gy and
seck a system of generators, '\ D

It may happen ihat the sets i'ff anil ft},” (uw S ONeTIET
under collineantion {#h - - ) but in such wise. N].lt the points p
in natural order corespowd to the 11()111T- g\m sonwe perpwuted
order. Thus ¢, contains the permutafdveronp of py, -« ..y
whose clements we shall indieate hysriting their eyele form
in terms of 1, . «..m. Also /7, {m‘mm L congruent under
the qlmdmm' i 111-T|J1111:1T1r;11 4 ,J;'so that g, » comtaing the
clement

wwwudbl aultbm'erry,{}rg—m P

it '”;.""“ R
U) Ayags J':‘.," - FTIE HER
{5} I X TR i Bt .

\\ Vi IR S TN

Sinee the, t&fnan Cremoa group is genevated by eollineations
and Aedlere follows:

{2) T-Qt’.\(zmrra Groupy Gun 08 genevited Iy the permntiadion

Q)u‘r’xfrp Hoaf yooe-oy ym and Hhe elenent A s .
.,“ e mention some examples, The guadeatic inversion with
center py and conic of fixed points on p, p‘ has & = 4.y (250
The quadratie transiormativn Ay, has N == (347 A - (34).
The cubic involution with double Flpoint at p, and simple
F-points at p; such that the P-cuve of ;; is the line
prpafie=2 0000 has 8= dyuy - ol - (28) (45).  Similarly
the Jonguitres involution of order » has

N ez Az Aigg o oo -611,23;—:4,251—1 . (23) e (2n— 2: 2 - l)'

Sinee 7' preceded or followed by a collineation is a trans-
formation 7 of the same type as 7' itself we lave the
theoremn:
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(3) The types of Cremon fransformations icith o == m Fooinds
are in one-to-one corraspondence with the double eosets of
e yroup g, will vespect fo 2fs subgrowp 1 of order w

We reeall {¢f. Miller, Blichfeldt, THekson ! pp, 25-26) that

A resolotion of g, » into double cosets with respect to I has
the form

Gy = TS -8, T4 ... A

£ N

where 8; is so chosen as not to liec in a preceding rltmhle

coset. No element of gu,» in one double coset 1. f{}lmd in

another bt the elements within a coset may eachibe Tepeated

L otimes. If 7% has e, £points of zero \gxder (ordinary

points), o, simple F-points, ... .. , @ ’,E\points of order
Jley+ e -F -« 5 «; = m) then in the doible coset If 5,41 each
element occurs k- - ey) oyl ool tiunded,

The only surc method of hndmg “actually existent new
types is bv LUIl%tIu(\.\}li&hgdm-%ﬁﬁ&htﬂaryfm]gl{ﬁ\\Il lypes l.e. by
finding products of elements ~ui Gon,e (c1.9% Chap, IV, § 20

In order to identify gy With certain known groupa we
shall frequently use a et}stam conjugate set of involiutions in
s Which gener (HP\\I]IE gronp.  Any element of g2, a3 a
livear transformatthn, las a set of “multipliers™. For an
involution thege{iré + 1. The subgroup £ of g, 2 I8 generated
by tl'elllSpo@ti{nis of type (12).  For p; — s the transposition

has one \Qlﬁfiplicr — | and for y, 4. and every other » a
multlplm\ 4+1. Hence (12) is a central involution with
Spast ot fixed points y; — e == 0 and center at the pole of

1& fixed space with respeet to the invariant quadratic

e 4 [4(2)]. Thus the involation is defined by its space
of fixed points y — 7y = 0 and has the determinant — 1.
We determine the conjngate involutions by the fixed spaces
conjuagate to y, —yy == 0, Under Adps, ;'3—;/,, becomes
vo——¥1——re— ry and under {34) this becomes y, Fa ¥y
But dyas (34) dps -0 dpeg and Ay - (34) 410 (34). Hence
AAysg 18 in the conjugate set of Involutions and is defined by
Vo — ¥ —re—rs. Similarly the quintic transformation
Aiss Auss dies 18 in the conjugate set and iz defined by
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201 ¥a— -+ —ri. Thus we find a sequence ot con-
jugate fixed spaces
P T
Yo — Y1 — V27 Vus

Zro— N pe e — 7s:
{4) Bro —2rn— pra— e — ¥x: O\

dyy — 29— 2y —Zps—ys— - — J’:J;.\:\’

O
Co o Tl rrmreme ey “' (4':“:" ‘m e

together of course with all that zu'isp«fﬁﬁim these by the
operations of F7. We observe that tha“coefficients ¢ of the
general form satisfy, in the eariy @dsts, the relations

W

A S .o @ -\:- = T ——
{5) E‘O (’1 N\ x‘m 2’
3 CO - Cl — ,':f D [N L 0 .

Since aceordifg” “f-‘(‘)jb,{a‘tkg?aljre‘ftmiﬁéﬁlbers are invariant under
Jm,2, the coeiﬁcien}s’?ﬁ"satisﬁy these relations i all cases.
It the general ﬁ&ed space (4) is transformed by A;e it is
reproduced aloQg,.?with the additive term

(6) H::(Cu_ffl_"'f-"s_“f-'s} (ro-—r1—r2—7s)

&
Wii;,-l\ﬁihe aid of this simple rule we find that the entire
s :0%‘c011j11ga.te generating involutions for m = 9 is defined
by\the forms,

AV AW =3k — -+ Dy kGt o+ r)—k— D

V (m BUW=Bk+Dr—l+ Dt rtr) =kt )

C) = B4 re— &+ L+ +re) —kyiFrs + o)
T=0,1,2,..).

Indeed for & = (0 we find respectively the first three forms
in (4). If then these forms are at most permuted under
typical guadratic transformation the conjugate set is com-
plete. The form A(k) is transformed by dies, Ais, <Leag,
Az into a type Ch—1), A(k), A), Bk respectively;
B(k) is transformed by A5, Aiss, Aus, Aduge into a type



6. CREMONA TRANSFORMATIONS. LINEAR GROUP g 17

Clk—1), Ay, B{), Ck); and C{%) iz transformed by
Aizs, Aisr, Airs, dege Into Bk), CK), 4G +1), BE+1)
respectively. Hence the infinile set (7) together with those
which arise from them by permutations of 7 constitute a
complete conjugate set,

The specific form of the element of g » defined by thes
linear form

(8) Yo OV —Cnim <\
+ I3 .  § \
in the above conjugatc set is « M
vo=1{(gF Dy, —eery—- - - - - ’\ ¥ Cp Vs
4 —_— i} u » ’ £ &
W =gy, e _-l)}i.ﬁ""}\'\' O G Vo

(6 ==1, -, m). 3
This is evidently true of the transpoSition, the quadratic,
and the guintic transformation. Ty ‘p?m;e it true in genecral
we verify that the transformation $ormed as in (9) from the
trangform of (8) by :llégb is the, transform of {(9) by Ajes.

We observe thﬁwﬁ;z,,,r?eue'ﬁrt‘é&" B¢Minvolutions of deter-
minant — 1, must have an® invariant saberoup of index 2
whose elements have g\determinant -~ 1.

Since for m = 9 oﬁhe conjugate set of generating invelutions
contain an mﬁm\e number of elements there must be an
infinite numbexNof types of Cremona transformations with 9
or more F-poifits. The number with § or fewer F-points is
finite. T@; are given in the following table.

i A D D; Dy Dy Dy £, ETE, B BB E, B Ei
i s 0685 1004 3 22 01100
& \:1 1860 8 4 3% 01 4 3 0 5 31 3 4
N\ ey 11 2 4 7 38 0 2 B 2 2 3% 3 0
g 1 11 0 2 38 1 4

o5 | 1 1
{10}Ey, ES" E& E Ew Ev En Fe' Ei By Eb Eu Ei By B By
&1 ©0 H O ¢ 0 0O 0 0 0 0 0 0 0 G O
|0 1 2 0 1 0 1 0 0 O 0 0 0 0 0 0
(2 5 2 7 2 4 0 % 2 1 G 1 0 0 0 O
@ |5 0 8 © 8 % 4 1 4 3 8 0 3 1 0 0
ey 2 1 0 2 6 % 4 1 8 0 6 3 4 3 0
g 1 1 1 1 2 1 2 3 5 8
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Here 4, &2, ¢, D, & rvefer 1o 3, O, 6, 7.3 £-points and the
subseript iz the order. For given type, o v ihe number of
~fpld IF-points,

7. The continuous aggregate of Cremona transfor-
mations of given type. The Cremona group «/, . in
Doy T I::i:: o Fpoints, the projective condifions onghe
sets of points Py, ('L).Tln that they way be congrient u{ulf?r T
coineide, when s =+ ¢, with the Zo---8 projece) con-
ditions o the 20 Fopolnts of 7070 and, \\'hl‘l],j}i)- g
and the pair of lmages poii. ge 1 appeary, widitghe 2 - 6
projective eonditions whieh define rhe U':llliﬁ\;ﬁii!uliﬂll. Henee
given the natre of 77wl the distribayy or its __;’“~pe..inr<
in the given =et PrLogiven alse foursgnlits of the ser (4,
we seek to determine the ]mwlmn\m the renaining points
nft Qm» "V

H owe regavd the plaaar uullnimnmn group ' oax Kiown
aud are pllmdlﬂ\&rwmﬂh‘i:‘a:ﬁlﬁbl‘ldi‘§' Begig transiormations only
in so far as they disturhaprojective relations we then would
be concerned only with those properties of 7 whieh it has
m common with thelentive aggregate C1C de. fhe donbic
coset of the H‘(J??Qxfaﬁ groatp el vespect to the growy of colli-
neations.  Tf gve utilize € to place the first three points of
Pl at thcde’ﬁe‘rmw poinfs, the fonrth point py ot the noi
pond, ’U,’N if further we reduce the individual factors of
pmp&{uvn'ﬂlt\ in the remaining pointy to one common 1o
al\'y making the last cofrdinate of each point the saae
"quamm' u, then the set P2 ix defined by a valne system:

\ (1} S T T (0 = D, -l

The set P, is then determined by the Zim- 4} ratios
vitgiiag iy st ioeo by the homogeneous coirdinates of
a point P in a linear space Japn—g. We have thus mapped
the ordered sels Py upon the points J° of Sy, - by menns
of projective invariants of P2, It we denote by (74 the
determinant of thvee poiuts p;, jy; pr and set

v = (123) (126) -.. {(12m),
== mi(124) (£ == D, aeey )

(2)
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the explicit values of the codrdinates of 72 Iy Xoes are

x= (134) (124) (23} =,
i3) g e (238) (124) (134) =,
o= (234) (134) =« (/= D, . m).

It is inevitable that snch a wmapping will itself have singular \
points and will present in particular cases the analogue (%’
Fopoints and P-loel.  For example all ordersd [)Lllldl?\bf'ts
for which pl, Pa, py ave on oa line will mayp 111t0. a,‘bmo'le
point £ in Jonu—g).

We utilize (' to reduce the set Q5 to a qmﬁ\n ('41110111('(11
form and obtaint & point @ in 2. Since Q) ts projectively
and rationally determined when P,”, ang? Nle t\'pe of T with
19ference to it are given, and vice \(r\x for 7 1 we have

1) If the sots Pl and Qn are COmgn affni wnder plavr Cre-
mone bransformition ﬂmu wg::‘wwaf&tue points P oand @

W
N Jagn—u @€ EUJ?JEU(B? 17 m TN EEMona frans sformufion

v i S The elementss & constitute o Cremona  growp
(2 in 2, RA
The genevators of, &,,, 5 arc obtained in the same way as
those of g2, Ig ﬁ}m be first that the sets Ph, and @ are
projective but mt MNn the identical order. If P is reordered
the 19]}19%&111;(1‘51\’0 point P in Suny.-y, shifts to £ and for
the m! ppss le orders we obtain ! points P’ (including 1’)
which f\m a conjugate set ander a Cremona gronp & in X
of (mdcr m! which 15 Isomorplic with the subgroup &7 of g,
.{‘ "Ft nt generating transpositions of &, for the more gvnel .11
Seidse PL ot m points in & has been given by the author (71 §7).
A sample for Piig oiven below in (6).
When gy, pe, pas s @us gs are the reference pomta and
P = gy the muit point, ey s merely

o= 1iu.
This inverts the codrdinates of the remaining points so that
the explicit form of the element dysy 0F s IS

(3) Aygs: af = Vo, yi=1ig, v == 1w (i=0D,... m).

o
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The explicit form of these generators for £ (ef. 7 YT § 1).
when os, s, Ts, o arve replaced by oy, 2, F ke

af =y wb o w-er oy 7 1ix
) _U: == | a T2 ST VTN ¢ I..-':_a; N

Z == £ . w—i 7y - J\:_\

AT 1 wy -t A v O

' #t 0t i iy H("':‘" . 1w

A conjugate agpregate of points undt'l"’?}’m‘g m 2, —p 1e-
presents in the plane the aggregate Ofhsets ('lJ'f,!, prajectively
distinet and ordered. whieh are gghgruent to a mewber of
the aggregate. Two members §¥%.) ()7, define o ternary frans-
formation 7' whose F—I}’miuzs"@lﬁd arilinary pairs are 11} qpre-
sceribed llDSitiO&;wé‘pd‘é%ﬂl‘iﬁi{aj‘” _g;,lél_'lrpuy other =et /5 in ke
aggregate there is a siithar 7' with similarly placed points
for which P2, . :1’1"0'(:nngruent. Then 7, " vield the
same transformatigndr in X for which both /% @ and P', ('
are conjugated u‘jn‘s As s conjugate set of points in X varies
through = weadind exemplars of all projectively distinet sets .
Thus the (fapping of sets P in the plane upon points of
}.‘_.zfm_g\:crdnverts the groupoid property (cf. 8) of congruent
1'113@7“?&"’sets into the group property of points nnder (F,s;
afidh"furthermore converts the independent variation in the

\Jplane of the m — 4 projectively independent points of £y, into
* the variation in I of the single point I

From the formation of the generators above we find that

(T) The Cremona group Gaue 0 Zogeen 38 isomorphic with

the linear growy gum,e. This isomorplism 4s shmple crcept

m the pwrticnlar cases Gos, Ghe, Gua for which it is ve-
spectively 1:16, 1:2, 1.2,

These cases of multiple isomorphism arise when for @ gencral
set Ph, congruence under T implies projectivity. Fhe anthor
has proved ('"IL§§ 2, 3) that this occurs in only four cases:
(1) uuder quadratic transformation, Aysy, the points g, pa,
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Py Pay Ps are projeclive to g, ga, 035 Gss Ga; (2) under cubie
traustormation Ad,es a5 (28) (45), py, - -+, ps are projective
t0 ¢, -+, g5; (3) under the octavic (Geiser transformation
(D of 6(10)), py, -+, po are projective to ¢,, ---, ¢;; and
(4) under the 17-ic Bertini transformation (& of 6 (10)),
P oo, Py are projective to ¢, ..., gs. In each case the
addition of auother ordinary pair destroys the projective
relation. ¢\,

For sufficiently gencral sets P, there are no other L:‘ibe‘i
wheve congruence implies projectivity. Nevertheless we sltall
have mueh to do later with speeial scts of points b th in the
plane and in space for which further types of{dohgruence
imply projectivity. If £, is such & set the peindP in Zpeny
belongs to a conjugate set of points which iy &raller in number
than in general; or more précisely P lb‘ \hxed point under
a sabgroup of Gm

8. Cremona groups ra&iﬁxmg (%roups in certain
preblems. The s!mfﬁe case, | prehmlmn to the above, of
Py, m pmnta on a lne, has ippok srant applications, We trans-
form I, by collineation it ‘the canonical form

£ )

(1 1,0; 0, 1; BN ay, wr; @, 105« -5 im0,
1 - . . . .
Thus P, is mappgd"lnto a point P in X
£ 9\ Hoagy Wiy vy Ty U
~C

Since (‘rem\om trapsformations do not occur on the line, the
() reguces to the subgroup Gm determined by reordering
thespa}ntx of Pr. The m! points P obtained by transforming
(11\' Permutation of (1) into the same form as (1) are a eon-
jugate set under @, in Y,_s. This G5, In X, was first
observed by Autonnel, the @5 in Xy by 8. Kantor®, and
finally the Ghny in Xm—s by E. H. Moore*" who recognized
the ratios of the codrdinates of / in the double ratios of Fr.

Jt is clear that (4,. is a form of the (Galeis gronp of the
cquation of degree m, (e )™ == 0, whose roots determine the
points of 5. The anthor has used the group G to obtain
a solution of the quintic equation’, and Gy, to obtain a solution



a3 I. TOPICS IN ALGEBRALD GEHOMETRY

F

15

of the sextic equation

may be stated as follows:

(2) If a given algebrade prablem (o gewiielene prollen whiew
stated in algebriie furmd Juts o flndbe aonher of soinflons
with a Gelois gronp of wrdee & o He origmad domain; Jf
adser g Liveewy Eransforandion of W ovmiinal viriditos o nd

The general principle luvolved

pvimeters the origod problen magg e redieed fo . %N
Jorme O aphich  mweofees v vsseaddnd pavanclers o ORE 1y
(ot further vedueible by such provessesi, and foiWh et
sofutions are wfl ratiooedly Trown, r’;’nu( mm;‘f':r elititisid
ek aways with pacemeters dl L AR .
wihich play fhe vole of & pomts \”‘\r rm;'m,rrm- msrr"m'
e Cremonet (el is Mr)i}ir:}p,"m \fim’i P €ltdors spiresep
of the fgiven problem.
We apply this later to (2 and Ih} Aroup of the 27 lines on
a cubie surface, 772 and the gr Uup ot the 28 double mgents of
a quartic enrve, cte, Ow N mbh, m \\Jl] e to connect The
G, detmmmed"{)\“& xpCCl‘{%kPT of %U points in space with the
group of the 120 ‘rtltauwmt planes of a space sextie of zents fonr.
g, P-curves and{dlscrlmmant conditions of #%,. W¢
eall that aggreg; Q‘e, Jof earves defined on 7%, swel that each
corresponds th t \e directions about a point in some set f.)m
congruent, ,Pm, the P-trirves of the sl Pm They are in
fact the Ji mn ves of the transformations 77 1. Bertini® shows
that, they” are rational curves whose multiple points may be
arbitearily assigned. If we denote a complex ; by its linear
PE;‘Tﬂr form as to @, and ascribe to the directions about a point

\the multiplicity — 1 at the point, the polar form fov p, 18y,

and the conjugates of this uudcr Gm,» determine the types
of the P-curves. Thus for m =8 we have the types

71
Vo1 Fe
2y — i3
(1 Bro— 2y~ e 0
dyy- ‘_)(h 4 ya ‘|’H) (? "{'}'H):

Dro—2@ + - el (2’1:‘|“}s):
6ro—3n—2G+F - +rsh
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A

For m = & an infinite number of types may be read off from

the values of 7 in 6(9) for the forms in 6(7) but these

will not exhanst the types. The aggregate of F-cuaves of

77 defines a discontinnous division of the projective plane’.

An hmmedinte consequence of the definition is:

(2% If Pl s congruent fo Qu wnder T the Prirres uf P osie
conjugute to those of Qo wnder T.

It in £, itself or in any sel @ congruent to it two L\i:\

the points arc made to coincide in some direction then tifeye
1 imposed on the sef P oa projective condition wh{iﬂ.h’ we
call a disereminant cordition on P,‘; It P,'i l'li]d:'Q:_:a are
congruent under A.., and if in Q,i, g coneides .\i’i:}h 3 then
in L the points ph, ., 1, are on o line. Thils*in P, there
exists a complex whose polar form is y, &% —y:—y: and
this transforms under g into the 101}1‘1,3 vy tor the
coineidence in Q,i. Henece the typeé;:'(if discriminant con-
ditions on ').n'l ave (cf. 6(41) the sa’[ﬁe as 'the fypes of con-
mgate generating .inv‘ﬁ’l‘ﬁ%‘itﬁ:f%ilfﬂﬁﬁ oY OTEAN
(8) The discriminant condifionsson the set Py, are i one-to-one
corvespondence witl ] o voigugate generating ineobrlions
of o IF such g Condition i~ satisfied by Py the corre-
sponding (.:*J-'f:mr;-sm\}rmsfbr-mr.af-e'on T Griase S i s i3
given in 8(9)yulegenerates into o collineation,

Indeed if pl.:g}!\ coineide the transposition (12) is eftected
by the identicg “eollineation; and it p, ps, ps are given on
a4 line _':152§isf a collineation. Any otler condition is the
transforn® of (i, s py) = 0 by some transformation T and
The, g;éhérating involution coiresponding to it is the transform
ohdiss by 7. But 74y T is a collineation if Ajag 1s
a collineation, provided the product is formed for congruent sets.

We have characterized in the above a variety of linear
systems, or particular curves such as P-curves, orhconditions
gnch as diseriminant conditions, all attached to Pn; as well
as the conjugates of this varicty as they appear in the con-
gruent sets @, in each case by a system of linear forms
conjugate under gme. Thus vo, Zro— i —re—¥s -+ TIE-
present the types of homaloidal nets; ri, yo—01—Fe, o -+

QY
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represent the P-curves; and y1— e, Yo—Vi-— 72— 73
represent discriminant conditions. BMore generally if

R - S NS
@ e o yr-f-p—1,
Beg—o1—---—tm = ¥—p-+1
then cyp — ¢ 71 = « -+ — G ¥ TEPTEsents a linear system(of

dimension » and genus p. I[f the integer (positive OF\zro
ordinarily) coefficients ¢ are such that » and p are not, negatne
the system exists; if however » or p is negative, 't‘ﬂe system
is non-existent or virtual when Py, is general. We m.n how-
ever, as in the case of the discriminant (*«Jﬁqditmns impose
on 25, the requirement that a virtual system be existent with
an actnal dimension » and genns p. ’ﬁheu the conjugates of
the form under ¢, o express the natﬁre of the conjugate con-
dition on the sets congruent to Pm

10. Linear systems (r =%} ‘D > 1); birational trans-
formations. If*TEy AR WG B for which D=1 the
pencil of curves om x pas§es throngh P —1 further points
each of which detcrmifi®s the same pencil. Necessarily then
the system is not €imple and the points of the plane divide
into sets of D‘pﬁmts in a planar involution. The mapping,

(1 yr = (g 2y (i =0,1,9,

furni é}"for a an ordinary peint in S a unique point i in S,
For{given y, determined by lines (5y) == 0, (v'y) = 0,
Q).”furnishes a group of points z which arise from the points

\\ on > 9 (o 2y = 0, X (e; x) = O which are variable with
n, 4. We have thus a (D, 1) correspondence from Sy to Sy
(cf. 5 Chap, V).

Let f(x}) be a given curve in &; which at one point p
has the property that it does not eontain any of the D —1
other points of the set to which p belongs. To the points &
on f(x} there correspond in (1) the points y on a curve f'(y)
in 8y; to a point v on f (i) and on g, 9’ the D points. in Sx
of which in general only one is on f{x). This particular
point x on the three curves fiz), D n{ez)* =0, Xyplexr =10
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can be obtained by rational processes in terms of ¢, 5* which
clearly can oceur only in the combinations (59') == 4. Thus
we find, for points « on the given curve /() a unigque solntion
of (1), namely

2) i = Beyy” i == 0,1, 2).

Such transformations as (1), (2), one-to-one and birational
between two locl of the same dimension will be termed ZJ&:\
rational trangformations. When this term is used it Willibe'
understood unless otherwise stated that the transformation
is not defined ountside the loci i question. The,a@gregate
of curves which can be put into birational cofi‘,e\pondence
with a given curve and therefore with eachgther iz called
a class of algebraic curves. A given clagg)defines the ag-
gregate of birational transformations & yhich connect any
pair of the clags, This aggregate, gohstitutes a groupoid.
Tf a pair of the class is gjven Ji-8“niquely determined un-
less one curve, and therefore ag:%ﬁ'ﬂ‘?a ohrve of the class, admits
birational transformations intoditself other than the identity
which is not true of thg\general curve,

11. Linear series onan algebraic curve. Complete
and special serigsN Under the transformation B in 10
line sections ofzthe transformed curve correspond to the
variable part of sthe intersections of J (@) with curves of the
net. We _ceusider in general the sections of an irreducible
curve f, \(Q“by the members of a linear system. First let
thosc,jﬁmnbcrs of the system which contain f as a factor
bewglitbliped, leaving & linear system | (5| of dimension ». The
cugres of |Cy| will have in general certain fixed intersections
with # and in addition certain n intersections variable with
the parameters of the system. We say then that  C.| euts
S (&) in a linenr series g* whose %7 sets of n points on f(«)
are in one-to-one correspondence with the curves of the
system. If those enrves of | (| which pass through a generic
point of f(x) pass necessarily through p#—1 other points of
S(x), the n intersections divide into n/p variable sets of p
points. Tt p>>1 the g*is composite; if p =1 1t is simple.
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It the system O, is determined by the members (g 1) = 0,
the mapping,
() e G G012, ),

establishes a birational cormespondence beiween /() and

a ewrve () of order 2 in N, when ¢ is stmple; or

a (u, 1) correspondence between flrh and a 2% when g8s

composite. We have then the theorem ref, ' C Inp IN\

(2) The aggregide of carees a hyperspaee, sptee, L™ p?fmf
aaed the w-fuld projective Lene Qe=sliected Vi mrt:m sitrfuee),
which ve de heradionad corvespondeiee nm’s » Yuglven rnrve
S ds vepresended by the agyregode -‘g_,{"h?wrpf’f fnenr series
gt (e = 1) cud out on fLe} by linewd jalenns.

If some of the curves in {1) are du\ppod o) s
ent out on # which is =nid foda ’,\ conliined jnogt. The
curve (5 in 8. is then a prn]é("ti’ml of €0 in N, frony 9 -
ot the referenc i‘ pmnh i1 s 1f thv Ny oo determined by
these reference pmn(% ra:'uutklé}r 0111 foopoints, the ovder u ot
the variable part of ¢} vednces to w—/k. A g which is not
contained in a lineaf\series of greater dimension but of the
sanme order # ig '\a‘ai‘d to be rompiote; and the corresponding
¢, is said to b}d normal curve, I.e. itis uot the projection
of a cave Uf the same order in a higher space.

As a .\anuenee of a theorem of Noether {ef, * Chap. V)

.3\,be proved that every complete g7 can be cut out

%ﬁv linear systems of adjoint cuwrres of f 1 e, curves

})l‘l’ll‘h pass through each s-fold point of # with multiplicity
(#—1 af Ieast. Moreover all the adjoints of given order

cut out a complete g7, if ¢ is a set of a complete g7 the
other sets are constructed by passing through the » poinis
of & an adjoint of sufficiently hich order I to contain G.
This adjoint cuts fin a set A in addition to the s(s— 1}
intersections imposed on the adjoint at cach s-fold pomt
of 7. Then all the adjoints of order { on H cut f in the
scts of the complete ¢* which contains . That g% as
thus constructed is unigque is a consequence of the residue
theorem,
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If g is complete and one of its sets 4 is divided into two
sets B, C' with respectively n,, ns (n; -}- #y = %) points, then
B, C are residies of each other with respect to ¢7, The sets
A of g, which contain B contain in addition ™ sets ¢ which
lie in a complete gi”f, the linear series residwal to B in g7.

Similarly the oo™ sets B, residual to € in gy, lie in a com-
plete q”l. The residue theorem states that, if £, (3 are any
two sefs of r,r, 9;2 respectively, the residuc of either g4
with respect to g7 is the complete scries defined by the oths'r

We say then that the series gt b q L are residual \\1K\1espect

to each other in g7,

Two sets A, A, which determine, and lie i, the same
complete g7 are called eguivalent. Thl\ & indicated by
A = A,. The taet that A is made up ofif’and € is naturally
written 4 = B+ €. The residue thﬂurem then states that
it —=B+C drw\ﬁd-bra@hhl,ary ol‘gth'f nd; =B+ (),
i. e. I and G mdke up a xet.z P== Ay, We cuatomdnh
understand then by 4 — B—l—(" that the complete g% defined
by 4 is the sum of its cgnﬁglehﬂ residual constitnents r}r‘, "fr
defined by B and ¢/ réspectively.

If £ is of order @ and genus p, the adjoints of order
m—3 of f—theSo-called g-curves—eut out a complete
i 12 called t]\l'\camm(al series. It is the only eomplete
series on Nf order 2p — 2 and dimension p -— 1. For any
completes ?}

3 5 n—7rLp, W =p—i (Z == 0)
If\z??O the g7 is called special. Every special eomplete
g* is contained in the camonical series which is itself
special with index of speciality ¢ ~=1. For given g7, ¢ is
the number of linearly independent g-curves on a set & of
g». For example a quintic r'ur\ef with nodes at Py, P(p = 4)
has for g-ecurves conics on Py, F; which cut #'in the canonical
series gf with index =1, The line pencils on the two
nodes cut f in complete g¥s residual with respect to each
other in g¢, each of which has index ¢ = 2. For, a set of
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one b is ou two eonies each made up of a line that cuts
ot the set and one of the twe independent lmes of the
other peneil.

It the canonieal series is composite ity sefs are composed
of pairs of points (e 2] and these pairs are oa 47, i.¢
the curve 7 is eut by a pencil of eurves in o variable pair
of points. I conversely the curve has a gy the sets df\the
eauottical =evies e compased of po- - 1 variable se-ta of o
and the curve is ealled fyperelliptic, A pubionnl r#fr(r (j; = {)
has oo® % an ellipfee cwree {po== 1) has = ! '3’4 o hypev-
elliptic eurve (p 1) has a wnigue g Im evample on
conie the ¢¥s are cut ont by line lnelm]s with vertex at
each of the 222 points of the plane; o elliptic cubic the
gys are eut out by penecils on the -.\‘3 puints of the curve;
and on n quartic with a4 noede (p 272 the unjyne #2 is cut
out by the pencil on the nodel

Under hirational tl'amxfng,lnliti(ul trom /() to 07 linear
series pass intd RGN SRETF B Rame order and dimension
and complete series pag® into ecomplete seriex,  In particular
the canouical series QI / passes into the canonical series on £,

12. The canénical curve. Birational moduli. By
birational tmn\f}mmtlon of a given curve, f{+), the number
of constangs\awhich appear in its equation may be reduced.
I 0 is :’gh\e smallest number which can be obtained and if
in thig@educed case the constants which remain will give
11:&{'1: they vary, to birationally distinet types then these J1f

Jeatstants are termed the modedi of the given eurve under
LU birational transformation. We sketch a proof that

(1) The general non-hyperelliptic owrve of genus p .=
3p— 8 lirational modudi.
The given curve has a unique canonical series cut out hy
the g-curves. When we map from the plane by means of
this linear system, setting

—_ ([I('E ;T)HL—-'S (2 ] U, l? P j]__]).

3 has

S i) is birationally related to the canonical curre ( ";jfl_g of
order 2p—2 in Sp_1. When f(x) is given, the ¢-system is
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determined uniquely but the projeetivity between the g-enrves
and the linear sections z =0 of (51" is at our disposal,
i. e, the canonieal curve is determined in Sp— only to within
a projectivity. If, by a birational traunsfermation B, f(x}
passes into /' (x'} the intersections of the camnonical adjoints
{pxy»* with f(x) pass into the infersections with f"(z") of
its canonical adjoints (pa'y* *. Thus under B wec have O\

Yy (9&' x)m—s — (lf;,_,;,’)-m'm---‘t (f(-ﬂ’) Jt” _’ . 0)\
and image points =, &' on f, /' determine the same pmnt Y
on the canonical curve. Hence R&

(2y AU birationally equivalent plane curves Jrapt p:w;edne@
equivalent cononteal curves.

The M absolute projective constants f‘}b};’f.’f are then
birational moduli of /(x). If we sclect p#;i points in general
position on the canonical cutve and thus ad]om p— 3 constants,
the curve, projected from ‘ﬂe%e %ts ngo an S, beeomes

JTATAYS ]"EILI

a curve of order p+1 and gepuss ) \\1th p{(p—38372 donble
points and therefore 4 p— 6 =+ p— 3 absolute projective
constants. Hence M — 343 as stated in (1).

The problem of deteg@mng moduli of f(x), i. e, constants
attached to £ (=) andjevariant under birational transformations.
is thus reduced 1o the problem of determining absolute pro-
jective invari 1‘-1 of the canonical curve. For example,
a plane sextinwith 6 nodes (p == 4) has for canenical curve
a space s‘eﬁtfc €%, the complete intersection of a quadric and
a cubietsurface. When the quadric is not a cone and we
na,mq Tts points by the binary parameters #, : #;; 7y: 1y of the
two/generators on a point, a section by a cubic swrface is

a double binary form
(3) @) =0 *

in the digredient binary variables £, v. This has 16 coeffi-
cients whose 15 ratios may bhe reduced to 3p-—-3 = 9 by
digredient transformation of ¢, z. The absolute invariants
of the form under such linear transformation are the moduli.
It is true that the number of independent ones is nine but the
number of those which are distinct from the point of view of
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rational integral espression is of course muek lareer.  We
have then a Lage complete system of wvarlants connected
by a corresponding large system of syayuies.

In the caxe of hyperelliptic cwves theee B pencil with
parameter 4 which onuts ont g awwd 2 p -2 members for
which the two poinls of o sel cobeide. The 2 p-A0 -
dependent double ratios of the 25 - 2 correspondin® para-
meters 4 oare the birativnal medolic Por f-]!iptif'\'nﬁhg\vt-s thiz
modulus s the same for the 2! s Rabenal curves,
birationally equivaient to a line, liove oo Jﬁf";f‘!iemul ntoduli,

13. Moduliofa curveunder Cremopé tfansformation.
Tu this and the fellowing scetion appdistons of lineur series
are given.  We observe that \\'}n-zl\z{j_.r} i mapped (el 12)
by its g-curves upon the caononid™ewrve inow, o the plane
of #(x) iw mapped (ef. 2} uporNdvitional surface, M, in N,y
We assume that p 7= 4, thal #he curve is not hyperelliptie,
and that thewwmd'mmiﬁ&iﬁhmgﬂm stmple Hinear system in
the plane. Then 1{110\ in =pace or hyperspace, ix covered
ouly once in the nui'ppiilg, and the canonieal vurve is i simple
eurve on .. ’;\"s\bet'm‘e hoth the curve (.';”_’_1! and surface
M, which gcol{ains it stmply ave determined only (o within
projective_€fansformation,  Also as before a Cremond transs
formatign€apptied to the mapping system eonverts /() into
S d the canonical adjoiuts of £(0) into those of /7 {z}
(_:_‘Ni&l" deletion from the latter of poszible tixed parts which
:{ft'e Peurves of the transformnation), while the point » in

\*Sp—1 determined by the transformed point o remains fized

Thus the relation of €,77% M, to f(» is invariant-under
Cremona transformation in the plane. If the rational /. is
mapped upon the plane in any way in such wise that y passes
into 2° the linear sections of Jf become the curves of the
mapping system and (_.-'ﬁﬂ"{g becomes a eurve #7{x") tor which
the mapping system must be the canonical adjoints. Bnt
two distinet mappivgs of 34, wpon a plane give rise 1o
a Cremona transformation in the plane. lence
(1) The invarionts or woduli of « won-hyperdliplio carve of
genus p = A whose eanonical adjoinds are a simple Hnear
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system. are the simultaneons projective incariunts in Sp—
of the canonical ewrve and a pavticulnr rational surface
on awhich the curve is not wmultiple,

We have here a companion theorem to that of 12(2)
which alse brings the matter of invariants of a plane curve
under the planar Cremona group into the domain of projective
invartants. It is useful as a means of indicating the 1t,1atne
efficacy of the birational and Cremona transformations in the
way of reducing a given curve to a canonical f}p&. N \‘.e
P‘Kpl(, # the situation as follows: “s N

2Y The dass of orves birationally sgaremhm’\io a giwen

ave Fle) of the type deservibed in (1) dividessalte ¢ number
of sibelasses wnder Cremona transformation YIf the canonical
cirve e Sy tdmilts no ro??mpaiarm§~{}ww subclasses are
in ore-to-one corvespondaice euﬂa desaggregaie of vational
surfaces My which contain CyEal Simply.

We give a few ‘J'\I}Wl&d‘}ﬁ%mmfﬁry dfgtivi= 4 the canonical
curve is a (5. It is on a umque gquadrie ¢ whence the curve
and quadric have 9 DI’(}JPC‘U\' absolute constants. A typical
form of the plane cur fc\l” the guintic with two nodes. This
has 10 absolute p yjeetive constants but only 9 Cremona
moeduli sinee one shch quintic ean be transtormed by guadratic
transtormation, With /- points at the nodes and at one arbitrary
simple pomt\mta oc! hpeu which are projectively distinct.
Again the 6% is on oc* cubic surfaces. I'he cwrve and one
such sudface My have the 13 projective moduli which belong
to ¢ }J,iid My A type of the plane curve is the sextie with
g edes which likewise has 13 projective moduli.  Bat the
}lalu, curve mapped by its t,anomml dd]OlIltb gives rise to )
and M3 together with an isclated “sixer’” (Cayley), i e. a set
of 6 skew lines on A3 which arise from dircctions at the
6 nodes.  Sinee there are 72 sixers on M. there are in the
plane 72 6-nodal sextics which are projectively distinet but
equivalent under Cremona transformation (ef. Chap. III). Thus
the projective invariants of ¢ and Ms rather than the pro-
jective invariants of only one of the 72 types of 6-nodal
sexties, are the proper Cremona invariants of the curve.
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=

Marletta'® finds necessary arithmetical conditions for the
equivalence of two ewrves under Cremona franstormation
when they alveady are birationally equivalent. These arve
arithmetical eriteria which distinroish the great vaviety of
types of rational surfaces on (577

The plane curves execepted under (13 are suel as bring in
planar ipvolitions and multiple correspondences. Thesedswill
not be diseussed further. L\

14. Residual linear series. Curves in detérminant
forms. Applications to the planar gquartic. Let
the complete 2 on " with zets A b, ‘ot by ad-
joints of order » in a linear system (NOUW A be divided,
say A= B¢ the sets 7 and 7 de l;ll\.nluplr t e zeries,
{;:l’ and Ir,',___:{nl-*,—-u._, T ), eaeh lllkd.}llr by curves of A
It B ois oa general set in o) 1hir_'. Farves of (", un f3 form
& system, ,.[,”'l

Gsist dPTpulbRSTy OERN L 1,

SN g

whose members £ aresin one-to-one correspondence with the
gots of q“’ This ('Bireupoud{,nce s determined when », in-
dt‘liendent ueta\(\ are associated with the vefevenve s and
when a furthedset, independent of any r, — [ already chosen,
is associghe® with the anit &'s. The eurves .1, are then
r]eﬁ11e(1\*f\"{\ithin a eonstant common to all. I 7' is a =econd
set \{1 ql the curves of '(‘ oo B likewise ave in corres-
paudence mth sets ¢ and therefore in projective correspondence
,\I:)mh the curves L. This system can be written as

\‘z
== Gl F Lt T L
Curves in the systems ¢, £ with the same parameters §; ent
out the same set €' of g/, Then the determinant
A; AJ-'\
Al 45|

of order 2+ in @ must ecither contain ™ as a factor or vanish
ldentically.  For the corresponding members of the two
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projective peneils, {; 4;+§4; = 0 and L; 4+ 8 4 = 0,
meet in o' gets ¢ which run over /. The pencils either
generate /™ in the usnal sense or they reduce te the same
peneil after deletion from each of a fixed part. Such fixed
parts determine a pencil which cuts out the variable sets
determined by B, B’. We assume that this second case does
not occur, The setz B3 ofg ! can be put into similar corre.,

spondence with parameters 1.?0, ~++; 4r,. Then the curve. OI

'€y which cuts ont a set B(y) and a set C({) will be

(1) (way (by) () = 2ZAymly = 0 O
| (e 0o ] o 0o, 0

%

We interpret ¥, g as dual codrdinates inf Sr, #, & as dual
codrdinates in S, ,, leaving z, & for dua‘f\oOrdmatea in the
plane of F=, For given % and variahie.l, (1) defines a Svstem

hich bl f
which cuts out a hxe\g“%tdt?lfagmg?glr étrgvlajfxa e set o g

and vice versa.

In the excluded case the, fnrm (1) factors for every x into
two factors linear respectively in # and {; in the general
case it factors in t isfai’ray when x is on f™. Then, for
given ¢, (1) Is satisied by all {'s whose sets in gfj contain
2 and these setsd/are independent of 5. Thus, for each x
on /™, (1) be(‘it}r’nes (yn)-(2L) = 0 and the form sets np
a mappin {of “points x on f™ upon the birationally related
curves (J On in 8., 8 respectively. The two row deter-
mlnarktb f the matrix '|Ay|| confain ™ as a factor, and its
JEriyy’ determinants contain /™ as a (k — 1)-fold factor. We
shdll be interested primarily in the case +, = #, in particular
applications, gsome of which we procecd to develop.

The canonical curve of genus p == 3 is a non-singular plane
gquartic /*, Cubics in the plane, adjoints of order 3, cut it
in a complete gl*. A set of 6 points selected on /* and mot
o @ conic determine a complete g8 whose residual series in
g3 is 8. The form (1) for this case Is

{2) (eex)® (by) (D) = 0,
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where ¢, £ are planes in S {y). () respectively. Por e
on fY (2) factors Into (yg)- (&) == O and /7 ix mapped on
the birationally related spaee xextios £y, 720, The curve f*
itsel has 6 modult and the chaice of 4 Introduces 3 more
sinee 6 points on 1 determine 0 and vne of s w7 sers,
Hence CF00. %2 have 9 moduli or 24 projective constauts
and are gencral space curves of order G and genns 3 (ef.™ R B6O),
For given g and variable . equation (2) 1= that oy poing
(z5) = 0 which runs over @ cuble surface on (”',,) the map
of the plane by cubic auves on the set g 0 r;-;

We may look upon (23 as a correlationg firm Sy to S(2)
which for given 7 determines o point 50 . The dual
forme of thix covrelation lus coeffiv u-nQu\\ Lick are three row
wminors of .1,  coutaining (/*)* n\a Caetor; 1w

3) (A Byyz) == (wxl (ee ;Jl uc AP e e ) WAk
(5 _ .
ww—fdb-.r;amﬂm’ﬁﬁtﬁy-org-ln (rog 0ol Sh
where primes, keumdw. f‘t{' indicate ecquivalent symbols,  The
form (3) has 3 - -1 \l coefficients or 47 tatios and theretive
AT —R— 15 —\\1"} = 9 absolute constanis umder dipredient
linear transtoymation of @, y, 2. We recover the form (2}
from (3)sP¢rewriting (3) in dual form

1 .‘f;o
( )\;.:

V¥ (g (el) = Gy o 2 @3 8 )G’y Tk

#

\

e 4 . W g . .

{& e numerical factor), In (3) for variable » there Iz a net
¢(NOf eorrelations. The valnes of « for whieh the correlation is

Q¥

singular, i.e., for which «;: == 0, are thoxe for which the
dual form (2) factors into the singular peints in either space.
Henee

f
) e |
= Q)W )@ ) (a8 BBy ST = 0.
We have thus attained an end which we [(requently shall
seck ; namely an expression for a given geometrie configuration,
such as f* and the residual ¢%'s on it, by means of an algebraic
form (3) whose coctficients are unrestricted.
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IPor given ¢ and variable x in (3} the planes in S(z) turn
about & point z whose equation is

(6) AREY BB @ W Gy 7D =
Similarly for given z the planes in S(y) turn about the point y

M QXN BEE DG 2 G 2 = O

These are equations in either direction of the cubic Cremona
transformation T between S(y) and &(z) detetmlned b) the
Feurves C%(y) and C%(z). For given y, (6) 1smt@e equation
of the image point (z{) == 0; for given [, the’ equation of
the eubic surface in S(y) on C°(y) which is ‘e image of the
plane (§2) = 0; in (7} these 1elati0n ¢‘are roversed, The
same 110].[1&101(1’11 webs appear in (2); in, parametrie form; for
given ¢ in (2) and variable  the pmn‘r (%) = 0 runs over the
cubic surface (6). wwwdbrauhb],ary org.ln
An expression of f* a5 48, “our-row determinant whose
elements are linear forms.in™x appears in (5) and evidently
every such expression defermines a form (3) and is associated
with one of the - @imra of residual ¢&s on f* A similar
expression for fas 'a two-row determinant whose elements
are quaumhc Jf7s arises from two comiplete ¢i's residual in
the ¢2 ent 0;{(1}3 conics. The residual series determine a form
~G
® O @006y — Zdgtn i =0, 1)
.uhe‘re t v are digredient binary variables. For the binary
Sydriables there is no duality. The form (8) has 6.2.2 —1
— 23 projective constants and 23 —8 —3—3 = 9 ab-
solate constants which arise from the 6 moduli of /* and
the 3 invelved in the choiee of gf. Again f* is the locus
of peints z for which (8), as a form in £, =, factors whence

) St = (e2)? (e’ z) W) (BB) = 2| Ayt = 0.

A further development of this case is given in connection
with the curve of genus four (cf. 50).
3*
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We examine the case of symmetry in (8) whieh then is the
polarized form of a quadratic in r,

{10 (¥ (hT) - = A, 2 LR T R

Then
' -'lu "li

in FANE - {eer)? (fzf.r‘)g[?;hl_}” =z lfi i o ) A\
e sy

it expressed as a syumetric determinant. The twy, 'ﬁrﬁduul
#¥s have coincided into a single ¢} which is mdd("up of the
sets of contacts of a system of contact conies, ‘the qu.ndmtw
system (107, Two conies of the system \\1th\p‘n¢1nwrmb L,
have their 8 contacts on the conie (e )S{0¥ (b)) = - 0. Lot
KA denote a set of the cunonieal wz.Qu:» L e, o e seetion.
The 4% cut out by conies eontaing S.l\{‘w A osueh that 2K - 4.
It the 8 points 4 are made up At points 2 doubled, then
2B -2K. An obvious Case, W8 77 . A i c. the line seetions
doubled are imprepey dhreadbERT LR pair of double tangents
furnishes a case for whidl,l'o:Z"B 2K but BE K. Moreover
in any contact systefiM(10) there are six pairs of double
tangents with p@riaﬁ:]e ers determined from

{12) N(:ct'a’ VBB ) = 0.

N <
Since there”are 14.27 = 6.63 pairs of double tangents we
find tiad
(15) e quartic f* has 03 systems of proper confucl conics
NN each containing sic pairs of double tangents.

\m‘z “ Denote by I); the two contacts of a double tangent. If
Dy, Dy and Dy, Dy are two pairs in the system (10} the
four double tangents have their 8 contacts on a conie and
are called a syeygelic fetrad. Any three of the four have
their 6 eontacts on a conic and are called a syeygetic triad;
three with contacts mot own a conic are an aeygetic Bread.
A simple reckoning with the sets shows that the conic on
the comtacts of a syzygetic triad cuts f* in the contacts of
a fourth double tangent so that a syzygetic triad can be
enlarged to a syzygeiic tetrad in one gnd only one way.
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Any two pairs from the 6 pairs of a contact sysiem determine
a syzygetic {etrad but the tetrad can be divided into pairs
in three ways whence there are 63-15/3 = 21.15 syzygetic
tetrads and 21.15.4 »= 28.45 syzygetic trinds. Since 28.9.13
triads can be formed from the 28 double tangents we con-
clude that
(14) The 28 double tangenis of f* conduin 28.45 syzygetic
trinds and 28-72 azygetic triads. O\
We consider now the systems of contact cubies of fNIE
¢ denotes a set of contacts then 20— 3K, If gagu on
a conlc, and the system therefore a syeygetic syStem, this
coni¢ cuts onf a furfher pair A such that (?’{’—]5:5 = 2K.
Hence 24 = K and A is the pair of contadts of a double
tangent. Conies on A cut out the ¢f det-grn;mgd by ;. This
maps f* into a curve on a guadric surfaee which cuts eacl
gencrator three times and has a doub]§:~ point with generators
as nodal tangents. The space sextie’is then a special form
of the space sextic P HeAREOURYRECIEYE)) with an actual
node. There are 28 syzygeti® systems, one for each double
tangent, and each sysEt{ﬁ' contains, according to (14), 45
syzygetie triads of dofiblc tangents as degenerate members,
When the set Gy 5t “contacts are mot on a conic and the
system of contaefngubics is azygetic we have the particular
case of (2) forwhich B=C and 2B == 4. Since the two
g3's now g:qii}c'ide, the spaces S(y), S(z) coincide and ¢,
are piax:&\\e&iﬁ the same space. Then (2) is merely the polar-
ized folm of the quadric,
ey () @)t == 0,
which furnishes for variable 5 the contact eubies of the
system, Now (3) also is the polar form of

(3% (hx) (By)* = 0O

which for variable x is a general net of quadrics in §(y)
whose planar equation is (2°). The cubic Cremona trans-
formation 7 is now an involution whose pairs y, y' are
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apolar to the nef (37} The quartic /* ix the locus of points »
for which the guadvie (37} hasg @ node ot 4o and the syrarve
of this node, (24)° - 0, Ix given by (273 The equalion
of f* ix
(59) fles () (B0) (77 GER A8 24wy 20,
where (ay! ix a symmetrie determinant. N
I the base points of the net are pr.---0pg. o QW sef
Pioa pencil of the net, determined as e tuns m'qt:‘\ n Thoe &
in the plane, lies on an elliptic space quartigagirve £ 0F)
on . The sextic locus, ¢ (y). the map of F* Iy 0 and
the curve of F points of the involution 3% the loeus of
nodes of gquadries of the net or the ledds of nodes of curyes
E(®). Tothe four infersections of £4060 /% there correspond
the four nodes of nodal quadries’iyy ‘the peneil ou 2705 It
twa of these nodal quadries ¢ r:mr']dc their nodes cotneide ot th:‘
double point of a nodgl £ 1‘\«}1}1,101} responds to tangent <
of % To a double tangént & of 3 t]l(‘l(‘ eorresponds @ bi-
nodal £(5). Since this,must l}e durenm ate, and there canuot be
two conies on Pa, u\mmt consist of a line on, =uv 1 po,
line (12}, and x\uublc curve (34507R)% which meet in ‘fhv
two points onnNC" () which correspond to the contacts of &,
Thus the 2&pairs of contacts of donble tangents of /* map
into thes28” pairs of points where €% (y) is cut by the 28
lines (ﬁ“}pj)] (i, ==1.-.-,8). Since plane sections of % (y)
map eontacts of the system g5, a plane (g pyp)’ ents C )

..tﬁ."the map of the contacts of an azygetic trind of double

/!

“\Mangeuts. There are 56 such planes and therefore 58 azygetic

triads in an azygetic contact system. On comparison with
(14) it appears that
(1) The quavtic f* has 28 sycygetic and 36 azyyetic systoms
of contact cubics. For eqch systein of the latfer kind Hie
guartic admits on expression as @ synanetvic fonr-rou
determinant.
We receur in Chap. IV to the relations among these systems.
The study of loci expressible as determinants zoes back
to Hesse (** 1850) and has since frequently been rencwed
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(CL£.YTL2, Chap. 31). Evidently this is possible only if the
loeus contains incomplete intersections defined by the vanishing
of a line of first minors. Noether (Cf.*™I112, p. 929) has
proved that a general sorface in 83 of ovder g =3 has only
complete intersections. Hence a general quaternary form of
order g =3 cannot be expressed as a determinant nor ecan
any general form in more variables, These results of the
geometers have been overlonked in certain recent articles 2% Oy

15. Congruence of sets of points under regular ‘
Cremona transformation in space and hypers(pépe.
The groups Gu.i, gm,x, and enr. In space we d&ﬁine the
vegutar gronp of Cremona transformation to ha(fhat group
generated by eollineations € and the invc.nluto(.al enbic trans-
formation dyems, A

(1) Ave: @ c 1iny NG =0, 3),

with F-points at the 1(9&%‘?&‘&&&ﬂi}}é%—"gﬁwgﬁhi’ﬁ’ g and fixed
point at the unit point py.  Thigsranstormation, or its more
gencral type ('Ayeqe €7, has pFoperties entively analogons to
those of the guadratic trafdormation in the plane. It has
four F-points g, - .,.{ga}ld four inverse F-points 4, -, 1
snich that the «0? digestions at p; correspond to the points on a
P-gurface, the plaf:\e Igjr};nq;)‘, and vice versa (i, 7, k,1=1,..-, 4.
it is determined hyrthese two sets of F-points and one ordinary
corvesponding\pair ps. gs. If then pg, ¢s i any other corre-
sponding pair the two sefs of six points

~O Pis Por Dss D Ps: Py
\ 4 iy G2y P35 Gas 6y s

are projective In the order indicated. Hence A;s;, Is deter-
mined to within projectivities by its F-points alone and this
is troe of any regnlar Cremona transformation. The element
Aiusq carries planes into cubic surfaces with nodes at gy, <+« 4.
The six lines {g; ¢;}' are F-curves since they are on all the
surfaces of the homaloidal webh., The existence of these
Fleurves however is a necessary conscquence of the existence
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of the Fipoints.  They all are of the seeond kol i el directions
at a point of the Freurve covvespond to points on a P-cieve
which is fixed s the point runs over the Foewrve, Thix
frenrve @9 iself an Flowve of the inverse trapsformation
corresponding in a similar way to the oviginal  F-enrve,
s Wantor®™ has stadied these reguloe transtormtions in S
ander the name of transtormations withoul £oenrvesGEMbe
first kind.  In hyperspace Sp o the author has deve ”tﬂ'k] their
properties (11T 33 405, O

fn a linear xpace Sy an aleebraie loons of t}mgvuwm yoamd
order 3 will e cailed wosmgnifofd ov corirlg e speeitivally
an 2 oor VYL A manifold of dlIIl(‘Il\]Ul]"‘hll’ will ovdinarily
be vaIIml a enrve O%; and of dimengign® two o osurface F
At the otlier extreme h:m ever, a4 neAEold of dimension A--—1,
which of course iz defined ln‘ }wnrﬁv equation, will be
ealled a sprend. ’

The dehmtmn nf 11\0 :mwlmm.mnn (1) and the regular
group ean be exten et]lanmnlalhl.t(-ﬁ to N and there t!u\ have
like properties. Two* wels of points in N ’f”. (g;,.b are
eongruent nnder A1< cr I gy e, pacrand gy, ooy g -are
corresponding {\\‘pmnta of .1 and 1—1 while g o, Wieiarteoi P
gm are ordipary correxponding pairs.  They are congruent
under 1egular ‘Cremona trapstormation in S i they are con-
eruent ,1{11(1@1 a sequenee of elements 4.

{e”spread in & with singularity ulmplek y at 7% o 18 frans-
tofmed into a spread with complex ;* at the congruent et (.

\~Tﬁk1ng account of the ordering of the points and of the fact
«/that congruence under 4 suffices to defiue congruence in

general it is elear that

(2) The various types of vegular trangformations i Sp e i
one-to-one correspondence with the dowble eosets of the
GrOUp G, e genernted by the permudation group M af vy, < vm
and Ay 1. with respect to I where

=k — 2 ¥ G=1...., 5+ 1}
‘11»"'1?€ +1t yi = e~1Vyyy— ZJ'f’J+ vi @e-1,.., k1 1),
Yho=yn (h="Fk~2 ..., m).
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If the set ), is mapped upon a point Pin a space Xppu—r-2
by first bringing it into a canonical form similar to that of
P2 in 7{1) and I in 8(1}, the various points P obtained
in X Ly reordering P,,ff; in & are conjugate under a Cremona
G I Zkpm-n—2) whose generators are given in (*'T § 7).
If P, of ave congruent under Ay .. z-,, the points P, Q of X
are eonjugate under the inversion of the codrdinates. The Go,
and this inversion generate the Cremona group Gux 0N
Sronr—9. As before O
(3) If the ordered sels Ph, QF are congr ient ?{?%fz(??'“féfg‘z?dﬂ:?'

Cremona transformation in Sy, thew -}‘ep?'esmiﬁ@é P points
PO in Zpon—n—n are congugate under an pPrrgtion v of
the Cremona group Ghax which in gcner‘gti\'is simply  iso-
wmorplic with the linear group gmp. ¢*C

Further properties of types arise from':}he invariant qua-
dratic and linear form of gnx whicp.. acd

@ — (retyghrapbishy orsip:
L Frisi (;i‘ —|— 1) ;fp%‘-j/i— - -——y?n_

These will be develope@z'ﬁ:& needed.

The elliptic norm-Surye in &, an E*1 Dbrings to light
a useful form of g4n An E*HT on the (k1 1) F-points of
Ay sr is trangfdrmed into a similar B! on the inverse
F-points. ThigJis birationally equivalent to E*t' and there-
fore projeetiye to it. If then we follow 4 ...zt by a colli-
neation Jhich sends E*7 back into £°" the set /. on
B .ghé's into a congruent sct QF on E*T and the elliptic
p‘a,'fh\jnéters u; of the points of Q’,; are expressed in ferms of
theYparameters ; of P% py the linear congruences (111 § 6)

wp = wy—2 (o - Fura)/ (1)
(¢ ==1,--. k41),
wj == gy —(k — 1} (o - oo Fruep)/ B+ 1)
(G=k+2 ..., m)

(4)

(5) Al,---,};+1?

The ambignity which arises from the submultiple kof a pe}t:i_od
merely leads to the projectively eguivalent sets @y on EFT
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This clement A1 and the permntaiious of the o's cenerate
Ao group e,y simply dsomorphic with o, 10 i the form
this Jatrer croup takes i the favarviaot Jinear spaee £, The
quadratie lnvariant takes the forn

[(h 21—l l'lli_r:"l' oo

KT R RTIR BN CUTI L
N ¢
2 AN

(6

For sets l’f, £ and £ thix reduces to an i;ni.ﬁ}i.'iin finear
form g - oo -, For oo discussion of Ilm’s&«z =cts we shall
findl the group e particalarly elfeetive O

The diserimivent vl ffinns on the -E‘1},, are those which
imply the coineidence of two ]ltlllli\;(‘llhtl in I’j',r if=elt or
i some set (,),,, eOngruent to }’H, l\[ijl reenlar transtormation.
The spronds of tHhe wf l,,,‘ afe those loer of dimension
F—1 whiel cither are they % U Qireetinons about o point
of Pl or L”“Cﬂ}k’ﬂ.}ﬁb‘ﬂ&l{lﬂa}é’i yUng direetions in o congrnent set,

16. Associated Sets of points. Apolar matrices have
been mentioned fu A It comnection with apolar lineny systems
of eurves. '].‘hez‘.q};\“mlnct of o row of the one with a row of
the other wigl apolarity condition,  The emphasis here
will be laidNon the colummns.

In Spdh linear spreads & let the sct PE of w points in
Sy be,fg'iﬂz:en by their individnal equations,

A
.'s’\\“ (pr & =00 (peD =20, oo (&) = O

N,
S
NS

* Any L+-2 are linearly dependent and the m points are there-
fore counected by m—%—1 independent relations,

Q‘la(P‘l ")JFQ?: (?)’ ‘) ‘+’ -+ {f-rm'(}im E] A
(f==0, ... m—E—2)

(1)

If 3 is a Ilinear spread in Sp—z_s and if the relations (1) ave
maltiplied in order by #u, - -. ym—r—s and added, a single
relation,

@ - (pH g (54 - g (pn & == 0,
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i obtained which is an identity in both & and », If the

codrdinutes of p, .., pn are the wm columns of one matrix.
the eodrdinates of q., -+ -, g, are the a columus of the apelar
mafrix,

Two sets of points, PL in § and Q2 "7 in Sy_p_s, are

termed associafed sets if their cofrdinates satisty (20, If P_;',",
is given, the relations (1) may be replaced by any m — L — 1,
independent combinations so that the set (" iy determined)
only te within projective transformation, The syvmmetry, m Z)i
in both sets shows that their relation is mutual nnd{ 1§ un-
altered by linear transformation of either set. £ 0

The properties of such associated sets have boel developed
by the author {ef. I §81, 2; ¥ We 1‘&;;\13}t111ate some of
these. RS

(a) The set P on a line is fixsomated with Qo ™ in Sps,
and the linear set is projective to, the “sel of parameters of

]

the points ¢ on the r%fthﬁlog&ggpallx};: 04)‘31 defined by ¢

H m—1 of the points g 4re put, m any order, at a
given basis in Sp—s. the, Tt point  takes ! positions.
depending on the ordgrl ‘which are conjugate under the
Cremona G, 1. \‘ )

(b) If # points Xgay pr, -, pr) of P are selected, and
a further gronp \nt S POINES (S2Y fra1. -, frts) of the asso-
ciated Q””_h—.\‘up also selected, and if the further s — ¢ —
points of eawly set are projected upon a I()wel gpace flom
either sPl&tnd group then the projected sets Pm—y_s, @t s
are al@oh associated.

%\ Jombination of (a) and (b) leads to:

{(¢) The members of the pencil of S..1's on A—1 of the
points p each of which is on one of the mi —7A 41 other
points p are projective to the paramecters of the m—nh4-1
complementary points ¢ on the rational norm-enrve R#—* 2
which they define.

The proportionality of complementary determinants of the
apolar matrices leads to hrational relations among the deter-
minants which we will illustrate here only in special ecases
{c£. 1§ 2 (19)) but to which we shall retwrn in connection
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with theta relations. A prodoet of determinants formed
from 72 is prefaced by P, from (4 v Q. PFar associated
sets £4, (1 the determivant products PO RN and Qi) (kD
are proportional.  From the determinant identity

PO 88 -- POasyan L pades) =0

for 5 we obtain the irrational relation, .\\’
[P(]_).)f»}-l (.2“"! 5—“]“—-—[[{]})(4}} (.‘”I«\ilsf-ljll'
Y + 10 mm; {mmn.;]l’

which is the necessary and sufficient mm]mrm for the asso-

ciation {or in this case the pm]((h\\t\) of the two =ets,
For associated I3, Q the ling~ ;\vn(l} frimm g, 1 the other

four points is cut by a hne an"a Pl oassocinted to the @

which omits g5, whenee tha Ssbts satisfy three-term reiations
of the tnllt}\vu'l'ﬂ""trv%aumaralyorg An

@ Z[P a;a) hh) QU N = ¢

' ,"’\ {i. I;_ft_{'f,l,ié,.‘},J:).
N

For iiSti!J:(ﬁ&tEd Fi. & the sections of the line pencils

from p;>ththe first four points., and from g, to the first four

pointsyare associated Pj, ¢ whence
2\

e ) )
“\* Here however there is a new type of relation which arises

Q

irom the four-term planar determinant identity; namely
(6) ;[P (Eik)y (I56). QI jEY (15812 == 0.
For associated P3, (7 therc are then the two types,

;‘ (P GE787) (k167)- Q(ij5) (kid)]? = 0,

@ ; [P(EjRT)(1667) - Q (G5 %) (I56)]2 = 0.
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Tf the set P is put in canonical form its representative
point £ in Sgen—x—9 is the same a5 the representative point
@ iz Spm—s—o of the associated set @ “ provided the
Iatter set is taken in inverted order (!"T §6). Hence
(8) The Cremona groups Gpp and Gam—i—s in Sppe—ien

corncide, and the linear groups Gum i, Gm. m—i—n @1e slmgy « N
womorphic. In this isomorphism the groups 1 correspong
identically and the generator Ay .. 11 of G {-mre-spg?{}e?;“.\

to the generator drvo...m 0f Gmom—i—sz. \

From this identity of Gy, % and G m—r—» there folldwathat
(9) The vanishing of a discriminant condition OR: \(fw set PL

implies the vanishing of a discriminant congétion on the
associated Qm " . AN

For cxample the 63 diseriminant cong{i@iﬁs on (% may be
indicated by the types {12)% (123), f123456)® which exem-
plify respectively 21, 35, and 7 cond‘i.tibn’s. The corresponding
conditions on P} are pespusiveliihd) S [4a67)", (1234567572
These latter require respectivgly that two points coincide;
that four are in a plane; and® that there is a quadiic cone
with node at p; and on.$he other points.

The associated se ,'\{Pg‘m and Qfs, may lie in the same
space and, in spedial’ cases, may coincide in the identical
order. They thel,Wwill be termed se/f-assoriafed. Hence we
call the P¢ }K@ich is the base of a net of guadrics a sclf-
assouiatec\f&t‘her than, as customary, an associated set. The
cases ingvhich the two sets eoincide in other than the identical
orde;r;\eifé discussed for x =2 in ("I & 1) and for k== 3 in (**).

%%/ Special cobrdinate systems. In a stady of geo-
rhtf'ical configurations attached to rational curves we fre-
quently meet with forms symmetrical in a number of binary
variables, which properly interpreted give rise to intcresting
loei, We illustrate the procedurc in space Sy which is suf-
ficiently typical of S, {n =2, 3, ---).

The rational norm-curve in 8, the twisted cubic €*, of
order 3 and class 3, has points and {osculating} planes whose
cobrdinates, for proper reference basis in space and on the
curve, in terms of a binary parameter #,:{,, are

Ny
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do v fay o Bih o BRAL aw o 6
5o A H =0 5 nho L —4
The plane £(/) oseulates €% at the poinl w(f).

The binary cubic
) (ec )" I I DI S L SO N i TN £ () 2\

. . N ¢
then represents either a plane e,y = g |-ty 28ghes =0

or a point oy S-S & - By i —ap S - l[.i}l Tence the
equations, K ~~.‘;:

) ay oo ity g Bete. oy E —;:v"\f‘ N’1 . A Myl
(d) Eu SRR T ;:1 Ty, _:‘:'_3 -\ rff ‘-.E.‘! = 4.

furnish, for given cubic in (2), llu» ]mint o such that the
parameters of the three ph\nm r:f>" on e roots of (e
and the plane & which cuty\(. i three points whose para-

meters are mfkar\kﬂélfbﬂa‘iﬂﬁhraml beggrefticients o, - dy in (3)
may of cowrse be replied by symmetric combinations of
the roots or lineary, £actors of («f)’. When these all become
equal equations (&mduw to {1).

A given CI‘&Q&L “determines thereforc a point .« or plane &
which mne:;poml in the nwl system set up by €% (a poldlm
in even %p‘mex) The plane £ of {(rt}® and the point @
(88)* apé-incident if («®)* = 0, i. e. if the cubics are apolar.
The\'fbiil planes & of («f)*, ..., (¢4 arc on a pointif 0 =4

;»Xa,e) (ay) (e« 8) (By) (B0) (/J) the four points  of the same
N enbics are coplanar if 94 -

»’\\ 7
\ 3

A surface, (3 ==0, of Ulder n in z will by using (3)
be converted into a form of order n in the coefficients of
the variable cubic (ef)®. If the cocfficients be replaced by
symmetric eombinations of the roots ¢, 4,, ¢, the form becomes
a symmetrie form of order » in the binary variables,

@) (Ba)* = (ay t)" (g £ (a5 L) = 0.

This we call the parametric equation of the surface; it &, %, 6
satisfy the symmetric form, then the point 2 of intersection
of the planes 4, &, 43 of ¢ is on the surface. The surface
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is called the parametric surface or spread of the symmetiic
form. It oceurs frequently in Mever's Apolaritat®,

A second procedure is to use the completely polarized
form, (Sa1) (Oas) - -~ (dury), of (62} and replace »; by ¢ {rom (1).
Again a symmetric form,

(5} (s 11)® (2 o) -+ {an 8)* = O

is obtained. If 4, ..., 4, satisfy (5) the » points of C° w 1t‘h\
these parameters are 1polar to the surface (dx)*. 1If a mbic

(@t = @ == (@) (D
ig such that “\
(ax @) (a2 @)+ (a2 = Q
N

the point z is on (dx)* = 0, and this qu‘ar'e is called the
apolarity surface ov spread of the syrgietric form (5). Thus
a given symmetric form represents efther a parametrie spread
or an apolarity spreadamdhirdebintgongral are in different
spaces. For example the symmetrlcform (7)) (aota P (g fy ) ==
has for parametric spreadfa quartic surface in S lefelred
to (%; and for apolamt}{ \}sredd a cubic spread in 8 referred
to (. Some emmpl‘&s\are studied minutely in ().

Another special { ¢edrdinate system in & is based on the
existence of 2 pmfiel quadric ¢). Thig with generators f, ¢
isolated in th\e"qmlplebt fashion has the following point, plane,
and ]MI‘dI;I{(tIIL equations,

: 0\ e R T — ()-
(6) o gy — e v B B —8 & = O
Z”\: ’
i\ . A . .
(‘k\;g-ﬂ = —y tl} @y = 'rgf_m Xy = -I.lfl, T fU,
g, = 1 Iy, oo nh, &= otety, &= Tty

A hilinear form
(a7) (t) = oo To o+ o To it @o T o Hannwty <= 0,

represents either a point or a plane (pole and polar as to 3}
by virtue of
) Ty == Gy, & = 1, @ = Uy, XLy = fto13

& = —ap, & == o, & =y, $ = —flyg.
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If (ao) () — O vepresents ¢ plane, the values 4, ¢ detormine
in (6) points on the plane scction of (4, i a point, they
determine planes on the point section of ¢,

It for two bilinear forms, tee) (e f) and (b)) (81}, the in-
variant {«d) (e« 8) vanishes then the forms as points, or as
planes, are an apolur pair of €¢; but as poiuot :|11d‘..1{lane,
are incident.  Four forms represent four planes oy a‘puint,

or four points on a plane, if (\AH
A\
i(b eylad) e (bel) () (heh) :‘tf?‘('m (el ‘

@ 1Bn«d) Ga) @, (e« BYT (s (0]
?l-..'f N (r'ri'} thed (et od) .
(aBT () (87 ()|
N

A surface (d2)" = 0 may Bevreplaced from (73 by a form
of degree » in the coefficients of the bilinear form; or it may
be polarized ?W\tim@.hran;i@iﬁ&m@i:&iﬂblus be replaced from (6)
by n pairs of variablesth, z; and the cuefficients ay; be intro-
duced later by an afalarity process. In geperal the quaternary
notation is reg]@t,;}zd by a double binary notation (cf.®* for
examples). The next coordinate system of this eharacter
would occuf in S5 in connection with a binary-ternary notation.

A</

L))
xi\..o
o W

O
NS

N

P
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TOPICS IN THETA FUONCTIONS

In the discussion of geometric configurations defined ¥y
sets of points in the plane and in space we shall have occa‘sion
to use relations which exist among theta functions, i p
variables as well as groups whieh are agssociated m‘sh them
The brief resumé of these matters which we proceeﬁ‘to give may
be supplemented from the aceounts of StahIN$® Chaps 5-8),
Krazer*!, and Krazer-Wirtinger*:, N

18. Definition, periodic propertie‘s, and characteri-
stics of the theta functions. Wy ad’opt for the constantly

recurring exponential funetion the notatmn
WW W, dbraul.ﬂ':n”ary org.in

"The general theta hv’;‘I‘lGS\ln p variables u,, - .., up has the
form
(2) d(u} = 2 El(am)®+2(mu)l

s\
in which (a.,mQ??fand (mu) are quadratic and lnear forms in
the integér3“my, ---, mp of summation and >y indicates

a sampiation over all positive and negative values of these
'illte,géi’é. Explicitly
N\ AT 2 o 2
y (am)? == g, mE+2a,m myt aymit Oy M0
(mw) = m oty +metis =+ -+ mpitp.

The p(p—1)/2 constants a; arc the meduli of &(w).
Separated into real and imaginary parts,

(4) tj = ?-.?J + ?’.sfj .

The necessary and sufficient condition for the absclute eon-
vergence of (2) for all finite values of wu,, ---, up is that
49 .
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]}

the real quadratic form (ra)® be oo delinite anid negative
form in p independent variables, FPhie disteibitive properties
of the forms {3) expressed by

. (e, me3-g¥F - L) - i eyl g
() (m-bg,ony - Ay g,
’ N\
are necessury 1o verify rvelutions given below. e
The p quantities ~. - -0 0, Torin a .»-;'mn!.fu;;--.{;’“r?\p:'-u'ufi of
Glu) iF S (e--el o ) a .-.f'uma"r‘r.-m:“fe\-,4}{:r.r.w';u';'ém( if
Sl-b ) v B9l Either type will t':r-‘j':l'vl'wr'r':'d to a3

W . .
a period of the theta funetion. h .i.x\:j‘kl\-n easily veritied
that & () has 2p distinet periods, sty

A
g, 0, 0, --.. 4 .r.-”.;?r:\_‘l:.' Y
0,0 w,ww.-d,bral{}%%fi"é?ﬁf;,?l'%'%?. gy,
From these by u@lii{]licatiuu With  dnfegers koo A

%10+, zp respectively we coustruet the geuernd period
¢ N/ :

(M) O poae (ur)oor Aoy

for whidh\ &/

(&) “:'f."('llq—{az)a—{—l:r )=S0 K —ituxf =24zl .

"’
Bﬁi‘s is proved by comparing exponents on the two sides
W [y . i Ty s
w\ii\;when, for $(w), m+=x replaces m. They are
A (amy*-L20m, v+ (ax)a)
== {a, m-1 2+ 2 0m A2, ) —{ne)2-—2 ().
If we set

iy = vy duwy, -, Up = f})"':'!‘i.‘t‘}}

and interpret vy, ..., vy, wy, -- -, irp as reetangular codr-
dinates in a linear real space M., then every system of
finite complex values w,, .-, u, defines a finite point w in
Ry and conversely. In particular the 2, periods of &{(u}
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define 2p points in Ry, which, with the origin w =-0, form
a proper (2p-1)-point in Ry, the analogue of a proper
triangle in the plane. Hence the 2p strokes from the origin
to the 2y period points serve as the axes of a codrdinate
system in K. Thus for every point u = ¢ in K, there

will exist reql numbers g, -, 4p; 1, +++, Rp sueh that
(‘3)@;:: {g, 7} = {gns -y g3 B1y + ooy p} = (ag) a—i—fam i, e\
’ Cﬁ(a'g)alhf—}d'lnz‘, Cp—(ﬁg) ﬂp‘]"".‘??_p ff X \,

0""
S

The 2p numbers g, & are called the period chargétéristic of
w = ¢ All points % whosc period characteristies satisfy

(10) 0<g<l, 0Sh< by

lie in the indtial perzod cell (7, with am;t'aal verfer at u -~ O,
The 2% vertices of the initial cel) a;e ‘obtained from mlues

i k== 0 1, W dbraulrbl,ary org.in
Any point ¢ can be 9xpre§sed uniquely as
(11) ¢ = {g!'?&r: {x: l} + {g’s h’}
)

where #, A as dl\m)%\\aib integers and ¢/, &’ satisty (10). For
all mlueq of ¢, BSubject to (10), the point ¢ in (11} rons
over the perio@\6éll C; 1; and the point {g, h) of Cy 3 is said
t0 be cong?f;{ég}’bt te the point {¢, %'} of the initial cell €o,0.
From {B)xor‘ w = {g, '} we find that

(1?)~¢‘5‘({.9, ) = 4y, B} E|—(az®—2{ax)ag)—2mi(xk").

Hence the behavior of () in any cell Cya can be deter-
mined when its behavior in (oo is kunown.

In the original theta function we make a change of origin
for the variables, whick does not affect convergence, by
replacing u by u+e. If ¢ is expressed as in (9) and if in
addition we multiply by E|(eg)*+ 2{g, w4 k)|, the general
term becomes E|(a, m+ g +20n+g,u+hnwi|. The re-
sulting function is called the thefa function with characteristic
lg, 2} == lg1, -~ -, Gps Pa, «--» Apl. Such characteristics [g, 2]

1%

L /
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&

attached to the thety functions arve to be distinewished from
the period characteristios {g, hj and will be called  theta
characteristivs.  Thus

(13) The frnclion

Ha, ]G - My - caps e I - )
is defined by the serivs N\
Hy. My - _,u Foie, mf-gV - 20m § :;..u\--’le.m'}i
™\

and s connerted with the origonad h’u!u jmu!mn by the
relation o

(A) Sy, Bty = M-+ {y, 2)) K rrq“f‘\} 20, 1 | hied)].

Other indispensable formulae \\}{&1{ follow trom this defini-

tion are: N\
: "}Us 1] e+, l}) O
) g — 2 (ru) + 2y h — hx}a);
o {J’W\J dtl(a auryblary otgm (o k E

Flg, 1 Ge+ s Y
s Hg g T B — (agy ) 2ol wloni B w3

(D) g+ =, z's.i%:})] (e} = H{g. Rl Ge) - Kl(gd)is;
(E) v‘[g, h (>— i) = P~ g, — H) ().

(@

Of these (B) gives the periodic properties of #{g, 2] ()
(C} phe effect of a change of origin; and (D)) indicates that
m{eg&r changes in the characteristic at most produce multi-
.phcatlon by a constant. It would sufifice then fo Lonsuler

1”,: ‘ab initio only functions with reduced characteristics, O = gy <

\‘;

0 < k21, though others would eventually cecur by usmg ((‘}

19. Theta functions of higher order. Theta relations
and theta zeros. Functions 2 p-tuply periodic. A thela
Junction of order n (n a positive integer) with characteristic
(g, 2] is defined to be a uniform function, ~+,[g, &)}, of
Uy, -+, Uy, regular for all finite values of «, which satisfies
tor arbitrary integers x, 2 the equation

nlg, B (e {x, A1)

1 o
W _ Suly, B} Bl —nlaz)*—2n(zu) +2(g L2 —hx)reii.
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If the moduli a; of the function are to Dbe indicated we
write it &alg, Bl{#)e. When » = 1, this i3 the function
#g, 2w} (cf. 18 (B)). We verify, again by the use of 18 (B),
that %, lg, 2l () = Dy, RI())* is a function &, [ng, nhl{n):
and furthermore that the functions,

5 H[(g-+e)/n, k] (nt)e, $lg, et 0)/ 0] (Wan,
@ # 1g + 0¥/, G-+ 0)/n] (e, O\

where g, o are integers, all are functions &, [g, £} (). ,'Eh\e
following theorem, with obvicus extension to any numl‘]’ét of
factors, is an immediate conseguence of the defining eck:mon{l]
(8) The product of two thele functions of ordersiay, ns with

characteristics [g, b, ¢, #'] respectively, sztfseta Junction

of order ny -+ ns and characteristic {g TN

It may be proved (cf. Krazer *! p. 40}, tha the most general
function, &, [g, k](x), can be etpres‘sed Jnearly with comtant
coefficients in terms ofwws(ﬁg; ofl&1 a]g_artl%ular functions, e.
those of the first type in (2) for whith e =20,1, n—l
and that these ## functions are themselves linearly 111depend¢nt.
Hence K
(2) Between any w? J\{fzmr:tims, I lg, W] (), there must

exist gt least ore, linear fiomogeneous relation with coeffi-

cients which ao*e tonstant with respect to .

By exammm\ an expression linear inm »? such particular
functions we~derive the relation

3 J,ih;, ](u»l— g, 1) = Slgtang, h+ni )
5 NS =< B —nlag)—2(f, nu+nkmithmdl.

T}ms ¢, ' may be so chosen thatly+ng, i+ ni]=10,0]
whence
(B) The aggregate of theta functions of order n and charac-
teristic g, ] may be converted info the uggregaie of theiu
Junctions of ovder n and zevo characteristic by & common
change of origin and multiplication by o common ex-
ponential factor.
This theorem permits the use of the simpler zero charac-
teristic in certain problems such as the determination of the
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zevos in a period cell, A from thesdetinition there follows:
(T) A Iﬁtnr'h.r;u, \'f,, {.":"'- x, h ':-;',}{H'I. where 2, Loure 'e"-?zfege-r.g,
in oo b)"ff.’.’r'h-rlu :?H!ff‘ AT
We ask for the number of solutiims or zeros of the p
oquations,
(8) .'}”1 (” ) iy, ... "}“_.. i Cp "N
where the thetas are general tunetions of the ordd@ indicated
and with the same charaeteristic which may, aftyhding to (8),
be [0, 0. li is understood that o«
(cf. Krazer*' p. 43} \gﬂ
(9) The p theta frunetions (8Y of ordepsSOY - <0 0y it the same
characleristic vaish wmummum\:’u 7Y S YRR THIDURIN Ty
points inow period ool on J’m«{«\m setlisfios Hee pongruchees:

)

Pils “lf'}g T i r[‘hen

X }
X

Y Py -y -.-1-“-~-’-n;, A =it iethe,

Heve (01) 7 g dpdtradiifayylocgind oo oy | o
Any two distinutgtl’;iftu funetions of the same order and
characteristic sugh, as two of the types given in (2) will have,
according to (é)\e(u'h perind of the theta funetions ax a guasi-
period withQthe same multiplicative factor and thus their
ratio will'be 2p-tuply periodie in the strict sense. It may
he prmed Lonveraeh {(cf. Krazer'! Chap. 4) that any 2p- -tuply
permdlc function of p variables with no essential singularities

\a\t n finite distance, cam, after proper linear transformation

f the variables, be expressed as u quotient of two thetd

* funections of Hke order and characteristic.

20. The half-periods. The odd and even theta
functions. We ask for such points 1 in the initial period
cell as will satisty the congruence 2w -~ {0, 0} or the cquality
2u == {2, 1}, This requires that u == [x/2, 2/2] wher®
0=%2<1, 052/2<1 and gives rise to the 2% solutions
#x=0,1; 2 = 0, 1. These 22 values of u in the iuitial cell
are called the Aalf-periods. They are in general proper put
the pavticular one for which » == 2 =: 0 is amproper since it

is a trivial period. We give thes,e half periods a distinetive
notation as follows:
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(1) {5}2 == {Er *}}2 = {511’:2_‘ "3;0-’{2! fir'a.?.- 5;9-;2}
(¢, ¢ = 0, 1).

In terms of a similar characteristie [7], the 2°7 theta fune-
tions of first order are defined by

(2) Syl Gr) == ‘_,u E (o, m-Lq/2 - 2(m -+ /2, u +9'74/2),. O

N

By specializing the relations in 18 we find that R ~
(3) Sl (22)9) = gl fu|—(nzx) — 200+ e Wi,
{4) Flae - {e)g) = el () Bi—(a6)®/4 — (e, wd*s mif2)},
(B) Hplslu—+1e}s) = &g+l (?ﬂ

B —{aefi4 ———(Eu)i\ff, y +&)mii2l,
(6} Hlp+28h) = Sgk ) E 7) mil”
(MY Hpll—u) = FH[—yl ). O

Formula (3) expressesnﬂ&hﬁrmﬂimhmﬁi@j%ifbpgqaerty. Formula (6)
shows that two functions # ekl and 9 [g]; () whose charac-
teristics [ely, [}y are such that [e] = [4] mod. 2 wili them-
selves differ only by a6l ﬂmstant factor and are not essentially
distinet. The 2% scl‘mally dlshnct functions %[y (%) are
obtained from valyes y =0, 1; ¢'==0, 1. Formulae (4), (5)
show that the 2% essentially distinct funetions are obtained
by adding the 2 half-periods to the argument of any one.
Thus the\’n‘ YTunctions form a homogeneouq set.

Acrmﬂ}ng to (7), #(u)==&#[0)(x) is an even function.
For .any other function, <¢[x)s{w), we have from (7) and (6)

54
Pl (— ) = F[—qh () = F—n+ 29k @) -E|—(gg)mi]
= (— 1)1 P yls (20

Thus the function is even or odd according as {gy') is even

or odd. From an easy enumeration there results:

(8) OF the 2 essentiolly distinet theta functions %[gk () of
First order and rational characleristic with denominglor 2,
the 29—1(2011) functions whose characteristic satisfies the
CONGTHERCE
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7, ,}; - 9. ’f;r bl %, ;‘_-;I 0 wod, 2

are peen and e reniisedng 27 D020 1) funetions wie odd,
With respect to odd and even theta tunetions of auy order
the following theorem (Krazer ' pp. 357 53621 halds,

(GY 1f Splg, Mluy s an oded oy veens Dienetion ol w0t s neces-
sary that (g, bl v veduecd forw he owe of the P0daracs
feristios [gle, If B ts the aoonher of Dinvarly Ner{r;wu’ff‘nf
even fimetions wifle given eliractermstio [yl () ’Mr numbey

ot odd functions, ten for A\ O
weren; gl = (01,
Y LI ST Y (n?—20)/2,
ko, i

F N TF e :"\\; () nd
noodd; [nly ecen i e, (f;r;il’:}\ hanaad 22,
oo iuRy12, (i - (ur—1372
Inl odd i, ';_.’(;{("q') Ve 2
TUEETGIT 2, v 1172

21. Integral linear transformation of the periods,
and of the ipér:lod and theta characteristics. The
vertices of t‘i\?\ period cells were Luilt up from the 2p strokes
from the ©bigin to the values of « given by the perind scheme,
18 (B)N\We seek a new set of 2y strokes which will furnish
the,\*%g\r’iie network of vertices. It is convenient to begin with

,%effo]}owing more general expression for the 2 p periods

«\'which they ave divided into two sets of p periods:

r !
W1y, Wap, oy, ffhpq . {rj-_’!l. R
r ! r
thpay (o, <oy By e, Gy, - - oy (g
(1) ; T :
3 o r I3 !
Wipy op. -« -, gy Blpy Uy, oo -y Bl

The 2p new periods m, @' must then be integral combinations
of o, @ with determinant -1, since the old periods must
be similarly expressible in terms of the new ones, Henee

) Wik Zu (i @i -t Breu w-;';ﬂ

doi k=1, 1)
wrk = 2‘(1 (ﬂfu mtu+ 6}'{-‘,& "’m)
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A point u of a cell with period characteristic g, ¢' with
respect to @, o' will have a characteristic g, ¢ with respect
0 w, ». From

_(,7 2 ((73’ @y _?_gy mw)
= {g, 57} = 20, Gv o+ 73 ),

the contragredience of g, ¢ with w, &’ is evident and WoA -

2\

find that _ A
(3) Gu == 2 (W gt e g5,
\ G == 2w BouGv+ 00 ).

If these new periods are such as will servg ater proper
linear transformation of the variables, to,define new theta
funetions, the 4p® integer coefficients if (2) must satisfy
certain relations {cf. Krazer *! p. 131) .’these are

2 (“m Ve — aomi} &Ereﬂl,hhgw(ﬁggém ﬂUJ 69;) = 0_»
4 \ 1if i=
( ) Z,{) (‘xt}i d()j fguj 7@?} { :f z 1_ j

from which there folim\wY\Stah] %7 Chap. 8)
N
20 (Yw je — /yuﬁsw 0 29 (“w 48_;.9 — [‘Jg .‘gm) == 0.-

o 1 lf 2—j

&

(8)

These ’a\f,ibns may be stated in a very convenient way
with res;)ect to the transformation (3) on the period eharac-
temstmb (Stahl * p. 831).

(ﬁl Tiwo period character istics, (g, 9}, Rk, 2}, transformed as
m (3) into {g, 7'}, {h, ¥} respectively, have the simultaneons
absaletle invariqnt,

Igsgi‘ Iqi 9’:
2 NN Z Ve 7|

Fi

,Le g, h = ig, Rl

Under integral linear transformation of the periods a linear
theta function #[g, ¢'1(u)s is transformed, to within an ex-
ponential factor, into a linear theta function, #[g, ¢'](% )5 for
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which tef. Krazer ' pp. 166, 1530y the transformed theta char-
acteristio . 4] I expressed in fevs of the original theta
chaeteristie fg, o) by

b ‘ '

- o M ey Leeg, e I 17 e e .‘iua- 2.
{7} < : , ; ;

"}' n a— PSS ! “’m- et S 200,

An obvious peculiarity ix thut the coctiicients o, gese, 6 of
the originad transtornation (21 do nat ocewr homgesiesisly,
Thix eomplication s removed Tor congrnees mm‘ttﬂ‘n 2 in 24,
22. The finite geometry defined by~tf10 reduced
half periods. Under integral linear tr.m Thrniation of the
periods a half period with el 1»11;1\\ el s transtormed
into one with chavaeteristic {« )y (cRR¥U0)L 1 all <uch hait
pericds botle original and fransfpgsabd, are redoeed  tmodule
the periods) to half periods inSthe fniond period eells then
it ix suftieient to take the Mwsformation from ¢, 10 &, 6
with eoneificients 1'0(111(1:*@».iur;f]illn 2. The effeet of (his from
the standpos oo dpliBreia g fay he expressed ax Tollows:
(1) The group § (21"‘{’3)‘) of Dwteyrad Bncr frossformoations on
the peviod ch@@actoristivs vontains an iveariont salupronp I
whick congls ?‘s\n;‘ those transformutions which vedeecr pioddo2

tfo the ;rf\\fm; The frctor qrong of Lownder 1 oos H;nmf*?@h’fﬁ'

fag Tl oments (3Y arhich are distined when yedieed pod. 2

Acenfding to 21 (6) this aroup is defineill by the nvar lcmt
TN 7 It also leaves the improper half period Ly 4/t - 10,0)

.\mnltercd If then we represent the proper vedneed halt pumd&

with &, ¥ = 0, 1 as point= in the finite geowetry (mod, 2)
of an bgp-l, the gronp of the rednced half periods becones
a collineation group with an invarfant of the type given
Thus ((}f‘ 0, 247):

{2y Under integral Unear transformation of the periads of the
thela function in p variables the veduced proper half period
chreracteristics are transformed like the points of u finife
space Sip—y (mod. 2 under the group Gye. isomorphic with
the factor growp in (1), of collineations which feaves Wi
allered the proper wull system

C= (gl ~wl gy + (g — o) + - oo+ Gy gy — T p Y
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This null system codrdinates te a point z, =" in 8, 4 its
incident null space, Sop_», whose equation in varfables y, 4
is given by C == (. We identify a peviod characteristic {&, ¢ }»
with the point = = ¢, 2/ = ¢ or with the null space,
3 {er xu+ 0 ) == 0 (mod.2), of this pointin €. Aceording
to (2), properties of sets of period characteristies, invariant
under period transformation, are projective properties of the
corresponding sets of points in S;p— with reference to thc\ .
given null system ¢'. We outline first these projective pr opel-
ties and translate them later to period characteristicq N

The following faets result from easy enumerations (EO g2
(8) The mumber of points in o finite space Sy ffed'2) is

He = 2i1—1. o

W

Given n Linearly independent Se—y'$NW Si the wmumber of

ponts on m of the Sk—1's but nodon “the remaining n— m

18 28711 4 Emmmndbm%wyr%ﬂg = .

In & (k1) linearly 1r1depgnd,9nt points constitute a poinf
reference basis and the (k4#) Si—1's on each set of % points
constitute an Sy refen{ﬁ?s basis.  Kither basis determines
the other and the twalwiake up a reference Lasis in 8.

(4} The number, E;,, af veference bases in Sy is

l{;:?Hm&k kA1) = PEH By H 1)

\5
(B} For }(Q‘_“k the number HY of spaces S in Sk is

\'\' \ Hf(;h) = HFCHF;—I T }{a'c—k/"Hk-Hk—-l Hl-

‘We shall be concerned mainly with a space Sy of odd
dimension with codrdinates z1, ---, Tp, *i, -+ 23 This
reference basis determines a unique space, X {x+=z') =
not on the reference points. The 2p--1 spaces are dependent
but any 2p of them are independent. If one of the spaces
is isolated, there is a unique point {cf. (3)) on the one space
and not on any of the remaining 2p spaces. Hence the sct
of 2p+1 spaces determines a set of 2p+1 points each set
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ordered with respect fo the other. Kither set constitutes
a basis in Spp—: and the two make up a self-dual busis. The
peculiarity of the odd dimension is that corresponding point
and Sgy—» of a self-dual basis are incident.

(6) The number of self-dual bases in Sppy 8

N — Raps/@p+1)= 200D Hyp 3 Hyp - Hi/ (2p+ IS

The order of the collineation group Gx in Sgp%£‘~~,\e‘s
N=Q2p+ V) Np. This group is augmenled by V¥ cor-
velations fo the correlation group of order 2 N Ssp-1.
Those correlations for which corresponding Eé\iﬁt and Sap- 2
are ingident — the so-called null systems — dve of particular
interest. They all are of one type and"qach may be deter-
mined by the fact that it interchanges gd;jﬁesponding point and
Sip-z of a given self-dual basis. If 8¢’ piven an enumeration
of its invariant bases leads to the theorem:
(1) The number Q\f\'@%ﬂm’&&]wﬁﬁ’éy Wiriant under the null
system (7 {s
Npe = 2p2,ﬂ2p;iﬂzp—s e H/(2p 1)

o\
xlilt proper null {stems are conjugate wnder G and each
s unalfered by\a group Gne (¢t (2)) of order

£ . ol .
O\ Ne = g HQp-~1Hzp—-;s e Hy
L'n%‘{h\ in Spp-1 two spaces of the same dimension are
conjidte; under Gyo this is no longer true. Two linear
. .
Spgdes in 835y are called skew if they have no points in
~common. If an S,y is determined by 2@, ... 2 the null

) L]

- _ S "
Sap—28 of all points x in &, meet in an Syp—re1, the nmall
space of S,—q,

e of . the common part of the muli Sy, s of the
" points 2. I the null space of §,_; contains Sr-1, then
S 18 called a null Sy,

: For example any line on « and
In the pull Sap—y of @ is a wulf line; lany otsher 1111(:0:1 x 1%
a'n orc:’ima-ry lime. A null space of greatest dimensjon, an
,Sp_;ll, is called a Gopel space. The mll space, S, s, of
a given Sty will in general have » space & ;1 inpc:)m;rzon
with §_1, which will be called the nuiz subspa:; of S,_;. Then
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(8) Two spaces of the same dimension n Syp—y are conjugate
under Gxe if and only if their wull subspaces have the same
dimension. An Sy with o wull subspace Sm—y (¥ — m neces-
sarily even) has o reference busis of the form

y(].) + 2(]); y(ﬂ) - 5"2),- ceey y(m)_l_ eim)" y(m—.—l}: el y(,-)

where the points y, z form part of a self~dual basis of C,

The number of spaces of various kinds and the order 6%
the subgroup of (¢ which leaves a particular type umltf’led
have been determined by the author (ef. '® pp. 250- 204,

We indicate the transiation from terms in they ‘ﬁ\te geo-
metry to the, corresponding terms in the e\]\o\ztmn of the
characteristic theory given by Krazer (“(haIx’\ 1.

Point in Sop—1. Proper.Pers Char,
Two points on a null (ordi- Two c:),ffz‘vgetic (azygetic) Per,
nary } line. WWW dbrauhblgéirlﬁ org.in
Points of a self dual bd‘il‘ﬂ Funddmentalsntemtﬁ‘ Saof
of €. " 2p+1 Per. Char. {every
{u pair azygetie).
(9 S_:. e Group E. of Per. Char. of
\ N\ rank 7.
Space in Sz skew to S,—:. Group H conjugate to K.
Null subspace™t Sv_1. Syzygetic subgroup of £,.
Null spaee\i\f"ﬁr_ s Group adjoint to K.
Null b \ Syzygetic group E,.
GopeI space Gopel group.

T}ge f\oIlowmg thegrem {cf. ** § 1) is of particular importance
in“thé applications.
(10) The group Gve of the null systom s generated by a com-
plete conjugate set of Hap1 involutions each altached fo
a point of Ssp—1. The tnvolution I attached lo x leaves x
and every point on ifs null Sep—o wunalfered and infer-
changes the further pair of points on every ordmary (ine
through x.
23. The basis notation for the half periods. The
2 p+1 Syp_s's of a basis, Byys2, are linearly related. If their

N

WA
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equations arc respectively g, 0 Lo 2 pe 1), this
relation is X ¢~ 0. In this superfluous codrdinate system y,
the 2 p--1 busis points are

(1) g U, H, Lyt

This ¢-th poiut ¢ 1.0 2p - 1) oon gy 0 but_on no
other Sy, 1 of the basis, 1T € has By oos an im-nri;m?basis
its equation is O\

@) Co byt b 70
>y O, 3y o N

For ¢ ,» = X (> oy 0 Lm}i\ﬁ. 2y, and, due to
2y = 0, the null Ny of the poistthy is o 0.

The point (1} will be named l’;f;p\\;-}. The line joining two
basis peints contains a third p’(:\m’l' called o resideaf point of
the basis. The residual pt)i;lf:!’;j on the line through £%ep-s,

Piapys 18 I’Wﬁﬁmauhﬁmﬁ?ﬁm@;mnd has codrdinates
(3) =SV 10 g O ted i k)

The 2p+ 1 poinls T, Py, -, Prap, o themselves evidently
form an invAgiafit basis B, of ¢ and from symmetry there
exist sim.i'h;:r. bases Ky, -+, By, A point £ 1s in the bases
Be‘;BJ::I}Qd these two bases have no other common point.
This/pet’ of 2 p+2 bases is symmetrical since any one of
th{.}]éses and its residual points determine the set. The

}j:ﬁfolntion I (ef.22(10)) attached to the point Pigpes in (D)
V18 o ==y, vk = yret stk 1 9. This interchanges B and

Bypts and leaves cach of the other 2 » bases nnaltered. The

involution attached to Py in (3) is #i = y;, ¥} = yi, yu== Yo

This interchanges B; and B; and leaves the others unaltered.

Henee (ef, 1% p. 271).

(4) The 2p+4-1 points of o basis and the p(Zp+ 1) residual
points of the basis form a hasis configuration BC, L&,
o sel of {(p-1)(2p+1) points whickh can be divided
2p+ 2 ways into o basis and its residual points. Eack
point of BC is in two bases By, By and s denoted by By
(6,7 =1,---,2p+2). The configuration is unaltered by
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& Gropia, symmelric on the 2p + 2 buses, @ subgroup of
Gxe, which 15 generated by the involutions atfached to the
configuration points. The involution aftached tn Py effects
on the bases and the poinis an interchange of the subscripts.
The points of Syp—3 not included among the points of BC
will have 2k (1<Zk < p) codrdinates ¥ = 1 and the others . O\
zero. 1f the 2 & unit cosrdinates are say the first unes the pomt\
is the sum P+ Poy+ - + Papes o but it is equally Q'II‘
the sum Poryyons 1+ - - —I—P»pJ apez.  Bvidently alse ‘tHe
order in which the subscripts are paired in these suyl§ 1§ not
materfal so that the point in question will be dempted by

Pioa. . = Popry .. 2_p+2.’ \ \

Hence (ef. ** § 1): '\.

(5) The poinds in the finite geometry ar@ named by an even
number of subscripts from the set, 2, e, 294 2 i such
wise that cmnpﬁeMM?@P%wiQf?ﬁb@mﬁts denote the same
point.  The linear coaz.d:iféo?efile"

f(\+Pb — -Pa.b

where like ?E{DS(?‘?N\EM the sefs @ and b concel in ab.

The following theorems are easily verified:

(8} Two points Bgy Py of Sup-1 are syzygelic or azyyetic ac-
corifing as'\i]ic sels qf the subseripfs, a, b, have an even or
an oda\mtmbm af sibscrepls in common.

{T) The %'}mhe; of basis configurations belonging to C s
.’\. ’

O

By virtne of (5) the basis notation redueces the construetion
of the linear space Shp—y to a purely tactical process. Ac-
cording to (6) the same is true of the null-system C.

24. Theta characteristics as quadrics in the finite
geometry. The 222 odd and even theta functions of the
first order, #{g)s (), are defined by characteristics [y, ¢'] with
denominator 2 and numerators #, 5’ = 0, 1. If to these the
peried transformation of 21 is applied they become new theta

Npo = Zp Hzp— 1 }—1—231—3 e H1(2}) + 2)T
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functions of the same order and type whose characteristics [7]
are connected with |4}y by the rvelations 21 (7)

_ - .
Tu = Z,, (“.N" e :‘glmf He —I_ oy .3|m:),

(D) o ) \
T T 2,, \— Fur T -4 dlw' '7,7;’ -+ Vuy L"I(u’)-

In this transformation with integral eoefficients the ehseﬁ“t\fally
distinet new characteristies { ¢ | are obtained by reducmo 7,7
modulo 2. Then

(2) “‘Lu’ b af” N — {3‘{“’ — )3;(”" . .':": (_nl(}d. 2)?

and (1) can be written \ ~~§"

Eu 2/ (“'-r i, i 'gxw eb"+ am ‘Bm)

(3)
Z (J,m l‘; i dn\ i +JM‘V m)
in which the w&&ﬁﬁdﬁﬁaﬁlmrﬁymrﬁmf the transformation oceur

homugeneously.

Then we observe tl’mst 1f the half periods (i. e. the points
in the finite geométxy) are transformed by 21 (3),

e
£ \‘.l _

(4) 5 Nt = D Bt ),
D7 = 2 (B Bt e T,
the que\tlpi(-

\‘ s .
(a\ 2, e, @+ 0,2 4 1) 2))

S transformed with the help of 21 (4), (3) into the guadvic

f

' = | = | et =2
Z{y (x 3’11 + '721) ‘/I')' _|_ ?l?l’ x?’
where 3, %' are expressed in terms of 7, 4 by precisely the

equations {3). The 27 quadrics obtained from (5) by variation of
5, % == 0,1 all have the same polar system

, ! ’
Zv(‘{‘c” e 4!" .’L‘i» yl’) = 0:

which coincides modulo 2 with the null system,
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o

= Dy —a ) == 0,

of 22 (2). Any two of these quadrics with coefficients {1, 1]
respectively differ by the square of an Syp-»,

PN (O E S UM A P I (VRE S R EE AR

thie null space of the point x = r; -f—g, =5+,

The particular quadric, >, x, «, = 0, is identified with the'\ \
original even theta funetion, u‘(eu = [ ()., The 2% ¢
remaining odd and even theta funetions, (5] (). are 1dent1f'md
with the quadries (5). [f the half period {#}. is ide )jm as
above with the pointx == ¢, 2" = ¢, then the thé€a) function
Hy 4 els () = ko H[gle (w4 {e)s) 1 to be idengified with that
quadric which arises from (5) when the sduare of the null
space of the point =z w hl(‘,h corresponds te the half period {¢},
is added. Then (ef, "* § 4) \

(6) Under integral Zemmw Hliﬂ‘aifu,b»m’fy%bgqﬁ the perivds the
2P theta characteristics are jJermufed Isomorplically with
the 2°7 guadrics (D} dn Sy l{mmi D), rehose polur systems
eotncide with the nudt a_,r{fem €, ander the collmation group
(TAL Of( 'i )

The 2°7 gquadrics d.]\é ot two types {ef.¥ Chap. 8; P § %

according to the mimiber of points whieh they contaim. It
AN

@ B -——-.*iﬂ—*(zﬂ-}—l), Op - wWEr 1),

then thelQure £, E-guadrics each containing (£, -- 1) points,
and Op \O-quadyics each containing (04— 1} points.  1f to
a q,mi‘lrlc of either type there be added the synaves of the
il spaces of each of its points then all the quadries of
that type are obtained. It may be proved readily that the
quadric (5) is an E-quadric if

(8) wyi e up 7 0 (mod. 2),

whence according to 20 (8) the E-quadrics correspond to the
even and the O-quadrics to the odd theta functions. Muny

properties of these quadrics with respect to their meidence
with linear spaces have been developed (ef. '*§§3,9).

B
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From the relation o{r - els(e) == K- Syl (e -k {e]y) there
follows that F[nl(e) vanishes for u - {e}s if |5 --¢]y is the
characteristie of an odd function. But {4 -1- ¢, corvesponds
to an O-quadrie either if [3], corresponds to an O-guadrie
and le); to a point on it, ov if fyl. corresponds to an F-quadiic
and {¢}s to a point not on it. Hence
(9) dn even fumction vanishes for a half period (f e corre-d

sponding E-quadric does not contain the correspondilg
point; an odd funchion vaniskes for a half ;rf.‘l"ﬂlf)fﬂ.i;f\ffl\e
corresponding O-quadric does contain the corvespdiding
poind. * ™

Thus it is clear from (7) that either t-ypcf\‘of funetion
vanishes for the same number, ¢, == 27! (22<- 1), ot half
periods if for the odd functions the improger zero half period
be included. A\

25. The basis notation for #heta characteristics.
To thelcoﬁrﬂingjc-e systﬁm T a%%%’.?;f' gqlfn23 there iy attached
a df}ﬁnl‘Fe quadric, K”z‘fyi g 0, =1, 2p- 154 -9,
which is characterized by.the fact that it contains none of

residual points of the dasis Bipie. The 277 gnadrics then
have equations of the~form,

"\
K+t ot = Kb oty ool e

The followin Set of four theorems (ef. ' § 1) may be verified
without,d(iﬁiculty : v
(1) ;f& is the basis comfiguration of 23 (1) with bases
.”..131, et Bipra every quadric Q belonging to C is wniquely
~O determined by a separation of the bases of B into tico
VV compleme:nta?y sels of p+1-—2k and p+4 14 2k each.
Q contains only those points Py of B which belong 1o
bases By anfl Bj drawn from different sets. Qs an E-or
an O-guadmc according as k is even or odd. The particular
quadric ¢ determined by the separation By, vy Bpraos
By, oo, Bopss will be denoted by o
Qla-'-sp+1—2k : Q.‘.D+2-2?C,n~,2p+2 = K+ 23}3 ==
(i = Loy pt1—25),
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In sceordance then with 24 (6) we shall adopt a similar
naotation for the 222 odd and even theta funetions.
(2) If the notation of 23 (D) for a point be adopied also for
the square of the null space of the point then

Qa -+ Qb = Pa, Qa + By = Qﬂb

where like subscripts in a and b are concelled in ub.

If P is interpreted as a half period, @ as a theta fungtion,
this theorem cxpresses the change in the function whEn®the
half period is added to the argument (cf.24). (5.';.

(8) If in (2) Qu, Q ave both K-, or both O-,‘gundrics the
point Py Hes on both; if however Gy, m\r of different
type, Pap fics on neither, \

An easy test for type is given in (1), L*'g}\ﬁ- == 0, 1 (mod. 2).
In connection with 24 (9), {3) furnish®s a criterion for the
vanishing of a theta function for, &given half period.

(4) The ‘nvofution (chra. Hb&)é@méﬁmﬁed@nﬁ}w point P, in (2)
wnlerchanges the quadrics Qa, Qu if they are of the same
type and leaves each zma?tered if they ave of opposite types.

This theorem in copjunction with 22 (10) enables one to
pass from a give '\ibésis configuration to any other and
thereby to obtainall the conjugates of a given figure in the
finite geomctry.\’di:“of a given arrangement of theta and period
characterispi¢s.

We illdsfrate the notation for the smaller valnes of p.
When{p= 1, Syp—y = S contains but threc points which
mdlgé'up only one basis, Nevertheless the hasis notation

With 25 -1-2 = 4 subscripts persists. 'We name the three points

\1" proper half periods by Py = Pus, Pis = Poy, Pos = Pusj
the three even theta functions by o = Pgq, Tz = Fup

B4 == y; and the odd theta funetion by ¢ = FHrem

Aceording to (3) and 24 (9) Iy, vanishes for « = P,,; while ¢

vanishes only for the zero half period. 'The involution attached

to P, leaves P,, unaltered and interchanges P, and Pus

The three invelutions generate a G; which is symmetric on

the three half periods and three even functions, and which

leaves the odd function invariant.
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When p == 2, the 15 points in S make up a single basiy
configuration with bases B, --- B, whence the 15 half
periods are of the type P There are 10 even functions

{ef. (1) for &k = 0) of the type s 7= Yuss; and 6 odd
functions of type ¥ = Hasuze- The function Hzs = Pz
vanishes for the 6 half periods of types Pz, FPjs; the func-
tion %, for the b proper half periods of type I, as welly
as the zero half period. The modular group of period trgas:
formations of order 720 is simply isomorphic with ﬂll\fl%'}
mutation group of the six bases. R ¥y

When p = 3 with B — By, ---, By there are 28 lfall)periods
of type Ps and 35 of type Preas = Fiors- Thené\éf'e 30 even
functions of type $rasy = Pasrs; 28 odd finetions of type
3 = Jpuses; 804 ome even function ofstype 9 = W vn 1587 80
The even theta function Hyey, = 35673f\\'?{1nishes for 12 half
periads of type P, and 16 of type’:ﬂl,.sa == Pygrs; the even
function & for the 28 of type Puasywhile the odd function &,
vanishes for 12 of type " I%ra{réﬁlé ry'gleg;llglm, and the zero
half pericd. The hasis ceajﬁgﬁration isolates one of the 36
even thetag and the moQwlar group is of order 36.8!,

When p =4 and, §B,¥ By, ..., By, B, the 255 half periods
comprise 45 of types Ps and 210 of type Piyss. The even
functions compfise 126 of type Hysass = Ferseo and 10 of
type J;; thewpdd functions comprise 120 of type 4. The
even rllnst‘{*@ﬁ Pisags vanishes for 20 half periods of types
Py, ,Rsi...:llld 100 of type Pies; the even function &, vanishes
for :?6 0_f type Py and 84 of type Pys.; the odd fanction

m;\%ﬁg vanishes foE- 21 of type Py, 63 of type Pia, 30 of
type Pur, and for the zero half period. The pumber of
basis configurations is 2%.9.51 (ef. 23 (7)) and the order of
the modular group is 2.3%.17.10!,
cases <t ety cont By ey used and, n eary
rensoms. HO“:eVer , }1; ‘Y have been overlooked for tactical

* ' ', 1t has usually been developed from the
Stdﬂﬁpﬁlnt of theta characteristics. Tt is clear from the 260-

characteristics alone. An im-
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poertant advantage of the geometric approach is the marked
difference between a theta charaeteristic (a proper quadric)
and a period characteristic (a peint or the square of its
null space),

26. Systems of theta characteristics. Projection
and section of the null system. When the 2% theta
characteristics are represented by the proper quadrics
A

-l : P
Qly, ¢ = Z (x, 2, f q, a2t -r;-y;x‘yz) £

L W

it is clear that the theta characteristics alone do.,'ilé’f' form
a linear system. For \‘

Qo1+ Qe ¥ = 2, A0+ B R,

This sum of squares is the square of a8y, _» and such spaces
are permuted nunder Gyc like their nuil’pbintq, {. e., like period
characteristics. But the 2*umadiies ol the 2% —1 squared
Sop—z's together constitute a lmeal- system Ry, of dimension 2p.
The sum of j members of Rgﬁ 13 a4 proper quadric or a squared
Sop—s according as the n aber of summands which are proper
quadrics is odd or ew}n A linear system Fy of dimension k
contained in s, ma}\consm only of 251 —1 squared Sypo's
and then behavesMike a system of period characteristics. If
however Fi califdins one quadric it must eontain 2% quadrics
and 28— Lsguared Sy,—5's. If these be replaced, as is con-
Venient-,\'by“ their null points, the null points fill up a linear
space.jS;;_l called the allied space of Fi (**§§5,6). Two
sysfems Fy and Ff with the same allied space and a common
Quadric coincide. Hence the 2% quadrics can be distribufed in
2 single way into 2%% systems Fj with a given eommon allied
space. A Gdpel system Fy has a null space as its allied Sg-.1;
A Gipel system has a Gopel space as its allied Sp-.

We give a fow examples of systems which contain quadrics.
Of systems F, there are two types; an E-quadric, and an
O-quadric. Of systems F) with two quadries Qm, ¢ and
allied space S, = P, there are three types according as the
two quadrics are both E-quadries, both O-quadrics, or an £~
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and an O-quadric. In the first two types [lup is on both
quadries; in the third, on neither. Systems F, determined
by three quadries Qa, @, Q. contain a fourth quadric Qupe and
the allied space S, contains three points Pus, Pac, Fre. They
divide first into two types according as the three collinear
points P are on a null or an ordinary line. The four quadrics
are then called a syzygetic or an azygetic itetrad respeetivelyd N
Since any three determine the fourth, the three arc alse
termed a syzygefic or an azygetic iriad as the case mag',-'\lae.
At least two of the four guadrics, say €, ¢ are qf‘;h‘é Sarme
type. Then in the syzygetie case the involution, Lo» attached
to P, interchanges Qu, Qs and leaves Pyo, Pye-€ach unaltered
(ef. 22 (10), 25 (4)). Hence Qo+ Poo = Qe aDANGs-Fae = Quic
are also interchanged and are of the gaﬁ"type. Thus the
system contains 4, 2, or 0 E-quadriege\\In the azygetic case
Lu» interchanges Qq, G and also Pyf Fie whence Qe = Qu—+ Foe
= Qu+Po is invarignt \&ngggﬂﬁé‘;&l&o ,is invariant. Thus
@ and Que are of different fype and the system contains 1
or 3 E-quadriecs. For p=>3 and a syzygetic tetrad with
allied 8 = P, Py, By the three types of tetrads are
exemplified by ‘9135%;: agsry Tasrs Jassrs Hy Thess, iz, s
Py Pagy iy Fue the azygetic case with 9, = Py, D5,
Py the two types of azygetic tetrads are exemplified by
Haz6, "9"24@;1“53459, gy P, Fig, g, Fag. In general two
systems, ,E,Qa'ild Fy each containing proper quadries are con-
il?g&;t%i}n&er the Gy of period transformations if first their
dl?l‘.ngnsmns k, k' coincide; if second their allied spaces Shq,
,,\:fg}n—i are conjugate (cf.22(8)); and if finally they have: the
\/same number of quadrics of each type E, O.
Doubly periodic functions of the second order can be con-
structed from the 2% functions by forming ratios in two way:

ey Ba ) Fpu), 9, (1) o {w)/ e (1) Fape(20).

The first ratio is an even fun'cti(}n with characteristic
ag =bb=20 (cf 19(3)); the second has the characteristic

ab = cabs and is odd or even according as Py, Pye, Pic. 18
a null lme or an ordinary line,
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A fundamental set (F.8.) of 2p42 quadrics is any set of
2p -+ 2 quadrics subject to no other relation than the vanishing
of their sum and such that any three are azygetic. A dis-
cussion of these will be found in (** § 6) with references to the
corresponding arithmetical development of Krazer (' Chap. 7).
We note here merely that every F. S, is obtained by adding
to one of its quadrics the squared Sy »'s of a seif-dual basig{
of €7 and contains s O-quadrics where s = p mod. 4. A ?IO?&?’Z{QI
I". . iz one in which all or all but one of the quadries\are
of the same type. According as p=0,1, 2, 3 (mq-:l 17 the
normal F.S. containsg 2y +2 E-quadries; one O- quadrlc and
2p+1 K-guadrics; 2p4 2 O-quadrics; one E\q‘uddnc and
2p+1 OG-quadrics. For example a normal BN for p = 1 is
Pohe, Ay, oy forp = 208 G, - u*a, f@p == 3 is &, s,
gy oo, gy and for p = 4 is %, 3)2, ,,\199, %,. The normal
E. 8. has usnally been employed to mtroduce the basis notation,

An important means of settmg; up configurations in the
finite geometry, or SO arficaneﬁaﬁ%a, is the operation
of projection and section of,jnhe null gystem 7, or more ex-
plieitly . A null system in ordinary projective space is
non-singular only Wh@?x\the dimensien of the space iz odd.
1f in such a spa.ceﬁ%:_l a point P is isolated, the null lines
on the point 2,(3mnd therefore in the null Sy of P, are
cut by any Shgh, £, not on P in the points of an Sy
{rr = p—l\);\ It 7', P” are two points in Serq they will
be defifedto be sysygetic or azygetic in the null system O
in bg,—.r_? according as F, I’ are syzygetic or azygetic in €},
i. eNideeording as the p]ane PP P is oris not a null plane

\Qt 3Cy.  The null system €% as thus defined in Shp— is the
projection and section of € from P and by { respectively.

The subgroup g of Gw which leaves P unaltered has the
order (22 (7)) 2 Iap s- Hl It has an invariant subgronp £
of order 2%~ which lem’es every mall line on P unaltered,
This subgroup 7 is abelian with involutorial elements (ef.* p. 326).
The factor group of I with respect to gp, 1. e, the group of
permutations on the null lines through I’ induced by ge, is
the group G'xc, of the mill system €5 in Sy,
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The 2271 quadrics containing P are permited in pairs by the
involuticn attached to P. These comprise Oz pairs of O-quadries
and Ej, pairs of E-guadrics. The quadrics of & pair have
the same section by the mull Syp—o of P and the further
section by [ furnishes the ¢ and Ep quadrics whose polar
systems coincide with the null system Ci. These pairs of
quadrics sre called the Steiner set nttached to the half period P

This operation of projection and section may be repeated
in the space Spz—1 or a like result may be obtained ,i\ii‘ﬂle
original space by projection from a null line and section by
an Sy skew to the line (cf. ' p. 261). Thusu‘ffﬁ:‘ p =3
and projection from Pj, there are six pairs{d¥ odd theta
characteristies ¥4, H4&, and ten pairs of even theta charac-
teristics A _

Bijiny Hijis = Fmnsy P (k{j\ ceymE= 1,00, 6)
corresponding to the six odd and)tgaﬁ»éven theta characteristics
for p =2, On furﬂmnbpﬂgj?kitm-l?ﬁlg}iﬂ Py, there 1s one
tetrad of odd theta cha.ragz’t‘éfistics Pz, Psa, oz Fesy and
three tetrads of even thetd characteristics

Piisrs Pijang '({?fm’, yes = s, Fror, Furss, Fulsr
O\ (3‘:.?‘9 kyl=1, R 4)
as in the casé’i; = 1,

27. Theta modular groups determined by sets of
pOi.r}Q.fThe linear group gm,» of 6, and gm, i of 15, associated
w’i@\egular Cremona transformations whose F- peints are

m:.ipuﬁd in a set P of m peints in a projective space Sk, has
< “élements w.ith integer coefficients and determinants +1. Such
a group, in gencral infinite, is the souree of a variety of
hlmbe groups when the coefficients are reduced modualo 7. uThe
sithation is_similar to that of the reduction of the period
E:Tlif(gg:}tmns modulo 2 and may be expressed as follows

(1) The clements of gmx whose coefficients reduce mod. v to
those of the identity form an invariant subgroup (in general

infinite) of G e Whose factor group g;',?,k s finite, A rve-

i
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presentation of this factor group consiste of the elemendts
of i Which are distinet when reduced mod. .

These factor groups for » == 2 are intimately connected
with the properties of sets of poluts under Cremona trans-
tormation. On the other hand the groups 4, are isomorphic
with the group Gwe, for suitable choice of p, or with sub-
groups of Gxe,. A complete discussion is found in (') w it
16 cases according as m, k=0, 1,2, 3 (mod. 4). One_dase,
ez, will be disenssed here in detail and for othel \Cades
references will be made as needed to the artiele sz‘red

The group g, is generated by the transyoﬂitmna of
¥1,+ -, 10 and the element 4.5 (6 (1)), With reﬁuctlon mod, 2
the Variables 7 will be replaced by x and ‘?193 has then the
form (N
(9 Auggr ap = o+ (g -y - ig "‘3“9) (t=10,-.-.8),
h X = {, ) (j == 4,..., 10}

Linear forms with cﬁﬁ?ﬂ&?éﬂﬁ‘{{i%mfé‘e&"&i%ulo 2 are of two
types according as x, does or does not appear. Set

(8) Buy..q=m+at L a; Coi=motatat o

Let B{D represan%\\the agoregate of forms B with 7 terms,
which of cowpseare all comjugate under the transpositions
alone; (7). the agaregate of forms C with 7 terms in addition
to @, On @pplying Ayes to B(7), the form B(7) is reproduced
or is \tgc'ﬁéform.ed into a form €'(1) according as B{l} containsg
an e\len or odd nonmber of the terms z, xa, 5. More precisely:
»(4)\A Form B is transformed by Ay info B(), CU4 1),
B, C(1—3) according as B{) has 0, 1, 2, 8 suberipts

n common twith des. A fors CQ) is trangformed by
Ayes inbo B(I+3), C(), BUI—1), C) according as C(])

firs O, 1, 2, B subscripls in common with Aios. Fhen either

type s altered the subscripts of the transform are those of

the ovigingl form and of Ayss with like subscripls cancelled.

Let by, by, by, b, denote those aggregates of forms B{))
for which 2 == 1, 2, 8, 4 (mod. 4) respectively; o, 1, s, 3
those aggregates of forms C{J) for which 7 == 0, 1, 2, 3 (mod. 4)
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respectively. Aceording to {3) a form B{/) has conjugates
C(1-+1), C({—3) and these in turn have conjugates If{{+4-4),
B(), B(1—4). Then as [==1,%,5, 4 {mod. 4} thers are
four conjugate sets of linear forms namely:

{5) by oo bey 33 sy 003 byy fr-

Naturally the invariant Yinear form a4 4+ - 1 210 (cf, 4 (DN &
is excluded from the set ¢, The transformation will Lw
determined if its effect upon the forms b, and ¢, 1% I\IL{)‘\.\”II
ince these include the individual variables. \ by

In the hasis notation ef the finite geometry im =0
with 2p+2 = 12 bases By, -+, By, Be, 132 tlL{\Ih;Lal forms
of the first and third con;ug*ite sets (5) ®ilVbe identified
with the points of Sap . as follows: N

(6) by €e; bs, o == P, -E'}liiucﬁ‘:,:i’i‘lii;ir Feg.

The identification of ¥ with P; aheans that B; covresponds
to Pig, Bim to P:;?ﬁ::ﬁ(ftfl:au lsffﬂﬁfqrfj.-g'l?or ithe other sets
(6,7, - ,m==1,2,8,.--, 10%» Turthermore the transpositiow
(x:, xj) is identified withs the involution attached to the
point P;; and the eigméﬂt Aiey with the involurion attached
t0 Puss. Then XN
() The involutilps attached to Py and DPriose permitte the
points I 3S{6} precisely as the cor responding traneposilions
{4, &'r’;l:?%d Avgs permute the corvesponding linear forms.
Thig\is evident for the transpositions and is casily verified
for Aisa" by comparing the effect of A,qs as stated in (4) with
that of the involution P, as given in 22 (10}, 23 (G}

\ “Since the forms {(6) in b, snd ¢, contain the individual

variables the element of g4 1s completely determined when

the effect on these forms is given. Since the points (B)
contain all the points of the Sspq (p=1D0) the transformation
f]f G.i\'cs is ummp]ete]v determined when the effect, on the points
1s given. Hence g, is simply isomorphic with the group in
the finite peometry generated by the involutions Fyand Liase-
These generators transform Py into all the pointe of type

Pro, Pisy Pyoo0, Piose, Py ne, 1.e. into all the points
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not on the K-quadric Qs (ef. 25(3)), Such a eomplete conjugate

set of generating involutions gencrates the subgroup of Gy,

which Jeaves Qg invariant ('°p. 325). The order of G, s

2% Hy Hy Hy Hy H, and the number of E-quadries is 2* (25—|—1)

Hence

(8) The group g7, of transformations of gy, veduced mod, 2
has the order 101 2. 31 .31 and is sémply isomorphic with

that subgroup of the modular group Gwe, ’whzck has mz,\

tnvariant even theln characteristic. O

This result is used latcr to prove that a ten-nodal natmml
plane sextic can be transformed by Cremona trdnsfﬁrmatlen
into only 2'.31.51 projectively distinct 1at1,e~n§aT sextics.

28. A remarkable system of equafion’s. Gopetl
invariants. F. Schottky (** §5) has dex{isﬂ}d:an interesting
set of equations which has enabled Jiin ‘to simplify very
materially the numerous relations which“exist among the odd
and even theta functigns,. érau}‘w\é L2308 gco which we shall
add others) he finds that thess relatmns are equivalent to
well-known projective relations) Wwhich connect the coordinates
of the sets of points, PE {@discussed in Chapter L

Schottky first a,ttdchaesx to each half-period, or peint in
the finite geometry, k\conqtan‘r say the constant e, to the
point P, where w\is a certain set of subseripts in the basis
notation, Secohﬁly he attaches likewise to- each of the
2% 0dd and\'a’en theta funetions, or guadrics in the finite
geometry&a “constant, say the eonstant £y, to the quadric @x.
where «aguin m i3 an aggregate of subscripts in the basis
notatipn.
The system of equations referred to then reads as follows:

1 Su = r[Jlew (Pu not on Qu).

The number of equations is the number, 2%, of quadrics (.
The quantity » is a factor of proportionality. The product []
is extended over the 2P—*{2#—1) points Py not on (Jn when
Qm is even; or over the 277! (22-+1) points Pu not on Qn
when @, iz odd.

Q.
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For p == | the system reads

(2) fw = e, Jiz = "t . R TN F == vee fyg e,
For p =2 typical equations are

f.ss == t€iq €13 a3 a5 Caq Chi»

J1 = ¥¢sg G2y €35 fap €34 Uz g Ban ag ot

(3)

. _ ) .\:\'

The sclution of the system of equations (1) for the 2%0«—1
constants e, in terms of the 2% constants fy, is My

(4) ey = {H(fm}/II(fn)} " Qn on PWQ‘, n{}t on Py,

For, of the 227 quadries @, 2%~ are not, a.thl 21 are, on Pl.
TIf then we insert on the right of (4) ’rhgvaluexfcrnen in [1}
the 7% in numerator and denomhipator caucel; and the
faetor e, occurs in each factor fof ihe numerator but in ne
factor of the denommmldbrﬂmﬁhﬁumﬁrg wf the 227~ gnadrics
on Py, 272 only are on Pys whence e, occurs 2777 fimes
in the numerator and im“the denominator.

For example the w_dbes of the constants e, in the cases
p=1land p = &\me

(5) = ﬂ 4 eig = (S flfis o)
(IJ. ?) ey = I fafa fﬁ‘ﬁ_}‘wo‘f}uﬁ% fljs }1'&"

\“ lﬁ..}(2ufl‘l4 f‘135.f_1’3;}‘1_4-5_f‘i46 fl a6
90110&1{\ uses for the value of f,
\ £8§ j;n, — Cfn

where e = %40, (0) it Fm(u) is an even fumetion. IF Dow-
ever ¢, () is an odd function the interpretation of the con-
stant ¢ attached to it depends upon the number p of vari-
ables. We shall find that the constants eu ean be interpreted
ask the discriminant conditions attached to a set of 7 points,
Py, in S (cf. 9, x5).

Of special importance are those products of the ex's whose
conjugates under the group of period transformations contain
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the constaints ¢, attached to the odd functions (and thus as
yver undefined) merely as a factor of proportionality. Such
products arise from the aggregate of points in Gopel spaces
whose types we proceed to tabolate.

9 - 20 The Gopel lines (ef. 22) or umll lines, comprise
10 of type P, Py, Py,
p == 3: The 315 null lines comprise A
210 of Iypf' })['9, Pu!-! P‘l":ﬂ-; and £\ w
Nows

105 of type Pregs, Plass, DPrors.
These combine into 135 Gopel planes which compl‘lbe
10D of type Pia, Pasy Fss, Frs, Plass, -Plz'uﬂ:.&;\é; and
30 of type Fiass, Prieses Prases Prosry PaddPeasi Prosr
p = 4: The 255.21 null Jines comprise N/
18,39 of type P, Puss Progs; W
45,35 of t},’pé sy DPagsss Prowo: :"’3
90.35 of type Pase, Pross, Prasgs
The 25545 nnll plamﬁm@hﬂ'ﬁﬁm}éry,org,jn
045 of type Pia, Pau B s Prosooy Przsey Lsase, Plast
106.45 of type Py, B, FPiaes, Paises iy Pogrsy Pugs
80.4b of type Pragf pm, Passsy Prsst, Possey Poseny Prast-
These combine into%265.9 Gopel Sy's which conlpme
1058.9 of t.}pe,,‘_i?lg, Posy Pis, Prs, Paoy Progy, Prose, Piuis-
Pragy, p&hﬁgj Pyszay Laasos Paarsy Ponsos Disso;
150.9 Oi' 1}{};9 P,a:;_i, Ppab. P“m,. P]“; B Pliq;! P»;.T_. -r'-r')uﬁ::
b ir,;, g1 Paargy Drorsy Prassy Prses. 11m~ Payzs .
For ghs="1 a Giopel space is merely a point F, and the
(mrespmuimo er» has the value (ef. (3))

(7)\ e == (L TOF s s

In the numerator there occurs the product of all the con-
Stants fi,; in the denominator those constants f for which @u
is on Py,

For p = 2 a typical Gopel space @ is the line Prs, L.
Py and the corresponding product of e.’s is

8) thg fay B = { H (.}"\J}m:‘fI (flaaﬁxsfm. fus)w-
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Again there occur in the denominator those constants £, for
which 3, eontains the Gopel line. Indeed we observe that
if Qm contains & then, according fo (4), f, occurs once in
the denominater for each factor r, on the lett and once to
account for it in [J{/). If @ does not contain ¢/ it meets &
in one point only, and frem (4} £ appears once in lhe deg
nominator but fwice in the numerator.

In general a quadric <, either contains a Gipel wpar-c'};
and is an E-guadric or it contains 22" —1 polnts of ¥ and

omits the remaining 2°—? points of &. Hence bv the same
argument S

HG%P*HBMW7HP@£f“@Nmﬂ

where [ [ is extended over the poiﬁt}‘ﬁf the Gopel space,
[1(fx) over the 2?7 even quadrjca Qm, which contain &, and
110/ is the product of the 2% gonstants

It Gy, G, -~ is O SO SR ESEE Spaces in the finite
geomeiry we define the products,

N\
(10) FL{;LQEFL H Galey), -

to be the Gopel Invariants of the functions. They constitute
a conjugate’s€t’ under the group of period transformations.

Their. rat\lo\s are expressed {(cf.(9) and (6)) in terms of the
Zero yalues of the even thetas.
Wit

respect to these (Gopel invariants we prove the
them em:

\ WID I, for p=1,2, 3,4 the three Gipel spaces, @y, G, G
of dimension p—1 have ¢ common wull Sp—2, and if the

Junctions are abelian theta Junctions, then there exists
a three term relation,

H%M+H&w+ﬂ&<ww

For p =1 the three Gopel spaces S, have no ecommon S_g
and the relation is merely

13 -l degy = (),



28, SYSTEM OF EQUATIONS, GOPEL INVARIANTS 79
This (ef. (7), (4)) is a eonsequence of the relation (cf. 30 (4))
s

For 3 = 2 the three Gipel lines with common S = P
yield the relation

€19 €34 50 = €13 Cag g =& L1y €oy tag = 0.
o K
This, according to (8) and (B), is satisfied if L9
@
42 6o 2 .2 1 8 42 B8 =1 L\
(Fgs Fiag » Fias Fae) - 2 (Flap Figg - Fhos T N
= (Fiop Foog * Has Jlsﬁ) =0,

or
Hlos Frag = Hrag 11'\1%6 9140 Hag = O\(Gf 30 VI

For p =38 the threec Gapel planesn?%lﬁl commoxn null Jine
Py, Pry, Pogrs are obtained by the{process of projection and
section hom this line as explainé@din 26. The three points
Pry, Py, Py of the re’ﬁi‘ﬂf‘fﬁﬁ“«?@%‘lﬂ' Y88 ets of four points:

Gy BN P?s,PH{)B; Pras;
G') .&”ﬁ PISJ' }—245651324:8)
(“\ _Pd4, IW,IJH)G Pﬂéi—r%:

which with t]u,* common null line make up respectively the
three G4 upei \pidneb The three f-quadrics @y, Qes, G of S
vield th\e sets of four A-quadrics,

(12)\::" Qiasy, Qiss, Gisor, Qisss (=12, 8),

\‘@ﬁ of which are on the common null line. Since in the
Sitlp »= 1) Quis on Py, P (¢, 5, k=1, 2, 3) but not on Py,
the four quadries (12) contain G5 and G but not &;. If then
we set

0; = Pusr s Fuor Paes

there follows from (9) and (6) that

II G (en) : H Gyley): H (s (en) = L/dgoy: 1/ay0;: 1/oy 0y

— T Oyl Uy.
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The relation (11) then follows from oy -k ey o 6y == 0
(45(4)).
For p = 4 and three Gdpel Sy's with a common nuil plaue
with poeints
Pis, Prgy Poo: LPosrss Posso: Drswoy Li0ss

there are three sets of eight guadrics

N

)

Qissra, Quitro, Quasso, Qisowo, Qussry, Qitvro, Qiavns, Q:;uz:gr\j ~
(i=1,2,3)
aud three corresponrding theta preducts LV

—— L
o == Pugr - - Fiaeno N

such that according to (9) and (6) )

T 6w T 6ute0: T T Gaten =i v2: (g0 2 40 07
www.dbratthibrary.org.in, _
e (o )8 s ()Y (a1

Sehottky {* § 4) shows that for the abelian theca functions
@OFBL (0a2 = (o) == 0

which verifies, (17 (cf. also 57 (15)).

29. A determination of sign. The coeificients of the
theta relgfiohs of the second order which are derived in the
pext §éﬁt on are determined by swbstituting certain half periods
wu},,\th‘e relafion. When ounly the squares of the odd and even
\tgetas oceur the formula 20(H) yields

(O # ok b (o) = £ (— 1. 2[4 e (0.

The f;r-gf-}t,)or &) divides out of the relation leaving the sign
(—;wti}\ 7 t(‘in1 be determined. Since however only the ratio
of two snch signs, say for $¢[y] 9¥[¢)s, 15 necessary i
of ¢ . for #*[gls and 9 [£1s, is necessary 1t
suffices lto find (~ 1)&7+80 = {—.a)ex) wi1ere {x}, is the
haf perm.d characteristic which is the sum of the two theta
characteristics Iy, It}
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The sign (-—1)®*? associated with the half periods
fe}e = {#, ¢}y and {x}y =[x, x'}; depends only on the first
part of the characteristic {z, e’}s and the second part of {x, ¥'},.
It is then the same as that derived from {e, 0}, and {0, #'};.
In the finite geometry the 27—1 points {5, 0}s (s =0, 1)
e in a Gopel space ;, and the 28— 1 points {0, #}
(x == (0, 1) lie in a Gipel space &; which is skew to &,. Any,

half period {4,4"}; can be expressed uniquely as {4, 0}s-+{0,4"} 50

Geometrically any peint P is on a unique line P, P, where
P, on @y is the projection of P upon & from & &md P,
on Gy is the projection of P upon G from . /TP in the
basis notation P, corresponds to {5}2 and Prllo {x}g we
shall set ' O

(2) (_“ 1)(‘?"’) = (Pnu, Pﬂ.)'\.\

Then (FPn. P is +1 or-—1 accexjdiilg‘ as the prejection
of Pm upon &, from G, is syzygefie ‘or azygetic with the
projection of P,-upon Gy fvethr@ilibrary.orgin

The sign (Pn, Fr) will depend not merely on the sets of
subseripts but also on thes/Ayay the Gopel spaces Gy, Gy are
selected. A simple seléction (ef.®* §3) is that in which
#,, y are defined b;y\}he two sets of p+1 points, each
linearly dependenty,\.
) G;\)Jw; Poyy Brgy oo o5 Papiraptas

ﬁé' -str P%Ss —Pﬁ?! trh P2P+2»1'
Then atjﬁoint such as Py has projections on Gy, Gy which
are.obtained as follows:

y)1‘5».&7 = Passissger — (sz + Pas) + (Psa + Py + Per)

== Pexg + P234567 .
We prove first that
(4) (Py, Py) = (— 1)+,

For if 4, j are integers in the natural order separated by
a1, 0+ -, qr then
Py = P{al+Pg1ﬁ’+.Pa.a!+ Ve “1‘-Par,i

i)

QY
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where alternate points are in the same space &y or o,.
A point of the sum is azygetic to its adjacent points and
syzygetic to all the others. If ¢ and j have not the same
parity, the first and last point of the sum are in the same &
and each point in the other G’ is azygetic to two of the
points of the sum in . I ¢ and j are of the same parity s
the last peint of the sum, say in &, is azygetic only to the

preceding one in ' and the sign is negative. \ \)
Let >
(5) é—"-1’:55"'% = + 1’ —1 “.( '

according as i, 42,..-, 4 18 an even or odd}\permutatmn
from the natural order of these integers; audlet

9, N
(6) By i iy By o = R —1
 { 3

according as d«--ér j1--+js kroNKe IS an even or odd
permutation from the mnatural order affer the sets i .- 7,
Ju-e«Js; ke oo ke have 't 311{1% A gt arranged in natural
order. Then N

mn Py, B = (— 1) e,

To prove this let, im?)fisionally i<{j <k which gives risc to
Six cases,
1 7 @By = (—nin

For if\(:is ven the point P, the projection of P; on Gy
from @

nG&zvends with Py, ;; and the point Py, the projection of
PJ’J‘(:Q%I G? from Gy begins with P, ;1, whence (B, B,) == —1.
<‘§ut if j is odd P, ends with Py, and P, beging with
Pjt1,j42, and (P, Py) == 41, This situation is reversed in
2° (B, Py) = (—1).
The remaining four cases depend on (43, 1°, 2°,
3% (Py, Py) = (Py, Py+Py)
= (— 1)i+J+1.(_ 1)J+1 pa— (_1)i_
4% (Pw, Py) = (Py+ Py, Py)
= (— 1)+ (— 1)) = (— )i,
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5° (P, Pu) = (Py+ Py, Pu)

= (1 (1) —
6° (B‘fr; Pik) - (}’:{k, Pﬂi‘i_fﬁﬂ

= (— D) (R s (e

Inspection shows that the eases 1°, ..., 6" all are comprised
under (7}, O\

Finaliy N\
(8) (Py, Pu) = &) ~\*
For (PI’J' P) = (PJJ,- Ik1+P23) = ("—l)H—l ‘,n?.k m&‘ l)hl £jif -
But Ejin £5il == EyjiRis

The formulae (4), (7), (8) complete the,determination of
the required sign for half periods withlfwo indices in the
basis notation. This is sufficient forthe’relations (p=1, 2)
of the next section. Since for any.value of p the generie
point ecan be expressed\v&&\r;ubi@gﬁ;ﬁ,fawmtgﬂvith two indices
these formulae suffice to deter’ml'ne the required sigm for any
two points, We give witheut proof the general result:

\
(Pf'xs "".sr\\e\ll.fg St ‘Rf .fg g lkz ‘1‘23—)
(9 = (— I)JI-*—JQ“F Hiate Bty il s
(e = 1if = 1 2 mod. 4: ¢ = Olfa___O 3 mod. 4).

0\

30. ’I‘l\é;c?a“relations of the second order (p = 2).
Tn the_¢ase of the elliptic thetas (p = 1) with one odd and
threg\even functions of the first order the squares give rise
t¢ Folr even functions of the second order and zero charac-
teristic of which according to 20(9) only two are linearly
independent. The six products pair off into three sets of two.
The produets in each pair have the same characteristic fr;+0
but opposite parity, Hence no relations exist among the
products,

As in the preceding section we ideutify the three points
in the finite geometry with the half periods as follows:

(1) Pw:'PM:{I:O}Q; Pza":Pn::{Os]}s; Pw:'P:u::{}rl}E-

B>
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For the functions the basis and the chavacteristic naiations
are related as foltows:

Gugla) === Sglee) 25 aplu);  Jualed = Suy (1) 22 Fruln);
Doale) 7= P10 3= Foaud; Glu) 7= Pt T la)

The four relations among any thrve of the four syuires are »

(1) Ph kG0 (— 1Y 9 ¢ St (= 1 9k st Oy
\.
(5) : €4 J;& 1}' {1[] = \fﬂ Jl \1{} —_— u" 4 “"H Lte )

[-.’-':-J". ke .‘".

%

N EE
}._( 3: -';_}.

'/s

The coefricients are easily checked, In the nrsg,\rei:mun {3}
let u = Py. The first term vapizhes and e 29 (1} fhe
other two are proportional to

%\
i 2 \) 4
(-_1) ‘}Ji’-}ﬂ.‘l_i_iPd: P¢4 l\,_‘” {}f-k L)"

which vanishes since (Py, Puhs: {f;p, By == (1) i
(ct. 29 (4)). [n the g@&dﬁ&bféﬂit’f’éﬁffe’a‘”%e? w = 114 The
tast term vamahes and. the others contribuie u“'ndl

= (Pu, Pis) Fia Fia. m%‘t’ (Pu, Big) = (=197 en; = &
The coefficients in the right member are checked by serting
u = 0. The mlu@u = } in the first relation gives rise
1o the modu‘lar i‘el’ation

(4) ('Y"D 1):4+‘—1) JHT(—'le HFa = 0.

In QQ& tase p == 2 the number of relations is uch greaier.
Wer give here for the first time in the basis notatios a coim-
”\pl“éte set of three and four term relations. The 16 theta squares
\ are connected by 240 four term relations which read as follo EE

L (—1) S Fn () + (~— 1Y Fn S (10)
4 (=1 Forn Fomn () A+ (= 1) Sy S (1) = O,
TL (=1 eimn S 8 () - (— 1V e Py 42 (12)
A+ (=1 e e H 0) 1) et Fn S5 0000 = 0,
L S 5 @)+ (1Y ety Sy 95 ()
A1 it T Fhn ) (1 13 S Fimlu) = 0,
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V1. L}xnm '}Jmﬂ- {”) - l(’lmm l}mm (”)‘I’ '_"1) ik &'?cmn ‘9;—? ()
b (—1) ey Fhnn i) = 0,

To prove these we first observe (20 (9)) that any five theta
sqpares are linearly dependent. If to the four given in I
we add % {1} theu in the linear relation comnecting the five
the coefficient, nf &7 (1) must vanish, since, for u = Ppu,\
&% (1) doss not vanish whereas the four vanith. To chechy,
the coefficients in T set w == P, The last two ferms va‘mah
and the first two are proportional to (n.;.

(1) Fhn Fnn + (1Y (Py, Pis) Hip Bon
which also vanishes {cf. 29 (4)). o\

¢

The other types are derived from L& Replace » in I by
# -+ Puan. The identity becomes ;‘."x

(= 1) o 45 00) + (b élﬁfﬁmhf? Qrﬁﬁiﬂg ADR ST

Binee  (— 1 e/ (— 1p= (—' 1) €jmn/(— 1) €imn, the re-
lation I% hag the iorm\ oiven. Again in I replace w by
te~ Po,. Then \\

{""‘_ 1}& l(}':gmn ‘-(}?g (’Nﬁ’T‘F“ _._. }-)J {P‘i?ﬁ.} R_J) 19'?‘??133 lt}fa‘n (ﬁ} + e 0'
Bince (Pi,,,“}\P; == {(— 1)+ gy =5 (— ¥ £y, the relation IIE is
verified \Fmallv in 1 replace » by u-- Py and divide by
(— 1N Then

AN s (

\w\sz v/ l}gmn 1)17)?1) (?” _"_ (“"" 4) 4 (Pijg })ti') Jﬂ?ﬂ, 1}3mﬂ (‘”’)
e (— Py, P S H @0
A (— 1Py, Pa) S Sk () =
whieh rednces to IV,

With reference to the Kummer surface (¢f. 32} I, .-, IV
represent the 240 relations which exist among the 16 sets of
6 troves en the 16 respective nodes. On the node n = 0
there are the 6 odd tropes any four of which are related as
in TI. On each of the 15 nodes u = Pmn the 6 tropes are
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composed of 2 odd and 4 even ones. The four even ones
are connected by the relation I, Any three of the four even
ones and any one of the two odd ones are related as in I1I. The
two odd ones and any two of the four even ones are related as
in IV. ThusZ,..-, IV comprise the 15153120} 90 == 240
relations mentioned. .
It we set 4 = O in these relations the {ypes Il and IV
vanish identically but the types I and III yield the modulal*
relations (cf. 171 p. 193)

Vo (— 1) Fn+ (= 1Y o+ (— 1* ‘}Rmﬂ+(_ l) &3’““ =0,
VI (_ 1)J Eimj {bmn ‘)yn + (— 1) Eimk dkmn 1}"’”“
+(— ],')%F‘M J!mn 'ﬁéu =0

The 120 products of pairs of thezlf(i‘\thetas' are also eomn-
nected by a set of 120 three texm relations. W ith respect
to an isolated proper half dWAQﬁh?mny the kb functions divide
into 8 pairs such that the Lh,atacteriqtlc of the product of
members of & pair is that of Pyn. Of these producis four
are odd and four are even, namely

o Y
) D5 (1) Fpmn {14'?{ ’91 (] 1‘S'L_,i'mr; (%t), Hete) Fromn (ﬂ), (e} Fimn (“);
Fign (24) 3#:11;(’&1,' i (1) P (el Fapa(26) Firn 20, P (1) S (00).

Any th\\)‘f each set of four are linearly related (cf. 20 (9)).
Thus fox*each P, there is a set of eight linear relations.

In ‘the determination of these relations there are two points
fxf dﬁﬁculty The first is that the sign (—1)=*" diseussed in
29 is, for a function of the first order, a factor (¢¥2)E77,
The second arises from the formula (20(6)) which states that

(8) Hly+28 ) = (— ) 2 ), ().

Thus the situation in question is to a certain exient arith-
metical whereas the basis notation is purely geometric or
tactical. The results given below in VII, VIII, IX were,
80 far as the signs are concerned, deduced from lists of
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particular formwulae which are not reproduced here, The
basis notation used to obtain the lists was the specific one

(T) {11 11} — {Poﬁ -Plﬂp P!o -P')‘!}
by which it is to be understood that
Py, = {10; 00}, ete.

O\
The 120 desired relations then appear as follows: -

{8) With a basis notation defined as in (7) and z,j, ?; tT} “ee
indices in the nafural order,

VIL & it - &3 (1) Fimn (1) — Wi Jigen + ;5 () 19,:;;.@ (?.t)
. + Fin "{}U-'L - ‘%ﬁ,@}%ﬁmﬂ, {'?f]. = O
If 4, §, kU ave four indices in the notval order, -
VL Sy Her o Fign (1) S @) — Sy ;?jm’- Sien (1) Fjin (20)
W\arw.dﬁqt&{@ﬁgﬁwabgm{ﬁ) ‘9_;'3-:?&{“-) =

The determinant of fwo cQEeMﬁs in the order given from the
matrin §

AN
- H Fon) Fult) Hy (Qdkm(u) g (1) i (20} Fiznlne) JJA*:;(R}‘
o || 0 ' 7 ﬂf ijib ‘fkm ‘)#m Jﬂu oy iin # L |

w equal to the deie?mmant of the remaining two colivnns in
the ovder Qz;z}n
Thus ot }he cight relations among the preducts (5) four are
given h\LVII one by VIii, and three by IX. By setting « = 0
in uﬂ\the modular relation VI is again obtained with a de-
tefmination of sign which is different from, but nevertheless
consistent with, that of VI.
These ninc relations are mueh simplified by using the
equations of Schottky (28(3), 16)). Set

9 (T ) == eyl ere
Then the equations read

Sy = thy = # (0) = 5 (123)(456),

10 _
(10 Fe=cl == 1(23456).
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Schottky takes, for the value of ¢; the initial term in the
development of the odd function 9, for fixed values of
w = u, ta, say w®. He also modifies the theta functions
by constant factors as follows:

(1) S w) = ¢ 6,00, Pras () == Chas Ouas )

N
Then in terms of the ey, o (), i () the nine 1‘e1atio§§ \z;re
I° (156) (234) 04 == (256) (134) 0 £ (356) (124) b2,
+ (456) (18302 <= 0
II° (284) 62 = (134) a2 (124) 622 (123) 626200,
TI° (15) (234) o2 = (26) (34) o2, = (36) (R4,
a2 {(46) (28) a7, = 0,
IVe (34) {02~ o2] = + (12) [@BIN3B) o? & (45) (46) o],
Vo (156)(234)4(256){134) 4 (358) (124) + (456)(123) = 0,
SV (12)(34) & E??&%Eéﬁ-‘-‘;‘gl@?ﬁg_ﬁ 0,
VI (28) 0y 0y - (31) Oy - (12) 03 6355 = O,
VI {12)(34) 010 UMJ&"£ {18) (24) 0135 24
o) + (14) (23) digg o030 = O,

IX® oay5 004 ‘—‘\3};;0}46 = £(12)(34) 05 5.

Here we h&ré";g'iven only a typical relation in each set and
have made“no determination of sign.

’Ikk\e}éiatinns 1I°, VII°,1X"° are given by Schottky (**pp.270
t‘g‘ﬁ‘). He uses the relation VII® to determine the (47} =— 4.

~Since (ct (10), (11)) o5 (0) = 1, the initial terms in this

‘relation are those of

{12) €23 01 gy Oy £ €2 63 == 0,

Similarly for the fixed valnes «® the initial terms of ¢,, 63, 3
are 1 whenee

(13)

g gy ko = 0.
The 20 relations of this kind imply that

(14) ey = (e;— g5},
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The equations (12) then imply that the initial terms. of the
odd oy, ..+, 6; are limear forms in u,, u; Whose roots are
€, -+ ¢g. But the imitial terms of the odd &, ..., ¥, are
six linear forms projective to the six factors of the funda-
mental sextic which defines the fumctions of genns two
{cf.*' p. 481). Thus e, ---, g are projective to the roots of
the fundamental sextic. .

31. Theta relations in the characteristic notation.\’)
If the medunli ay for which ¢} ; are ali zero the hlnqtia}l
Hg, h}(a). breaks up inte a product of elliptic thetas,”.ﬁ‘iithely

919, e QO

D = gy, Wl n)a, - HLge, hal s, - - - - P s hg) g,
We may then regard the general theta"a} a symbolic non-
commutative product of the elliptic thetas. In many cases
formulae derived for the el]iJ)ti_c {;]Léi&_s may be extended by
this symbelic mlllt.ip]icatigﬁ‘%o tﬁiag er yatiestor p- The process
must however be used with cantfon, For example #({1, 11(e)s,,
and (1, 1}{us)e,, vanish fo;,,ri{zu,:() while $#[11,11](e, s
does not. .\'\x’

The operations,

s}, @5 == ut{e}s,

where {¢}, ;'S\';;ny cne of the 222—1 proper half periods,
together with™ the identity, «' = u, form an abelian group,
G, ofterder 22 and type (1,1,---, 1). A simple set of
geperatbrs consists of I, , I, (i =1, . .., p) where I, is that
Opéﬁa’tion I {s), for which all the ¢, ¢ except ¢ are zero. The
p generators I, generate a (; the p generators Ie a G
and G is the direct product of G, and Gis.

- According to the formula 20 (5),

Pl {ele) = J(d, w, &) - (— D). Fy + ),
~an operation of G permutes the theta squares, to within

a factor common to all, and in certain cases changes the’
sign. To eliminate the permutation so far as possible we
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constrietin the elliptic case four functions X:fll {#1, h 2=0,1mod.2)
linear in the theta squares: pamely

X == 910, 0h )+ 10,100+ F 1,0k 60+ 71,1 (w).
Xao= 9°[0,0]()— 1 + . — " :
Y Xw= FPO00hR@+ . — = LN
X =—5[0,0k+ . + . —

’.\\\"
These have the property that I.. converts Yz‘ into (-w 1«)" Ya
and I, converts X" into XJLJrl The theta aqmues are in

turn expressed in terms of the X.1 as fol]ows>

2% (0, 0h (w) = X80+ X} () \er\xf (0 — X1 ().
(gr)' 2 1f [0 1h () = X5 (w)— » ‘f—i- Wk

1 0]‘2 (ﬂ'} = XU (ﬂ)'i—' e " _TI— ”
2% o' [1 1l (u)ww\rﬁbﬁaﬂhhary orgin ., — .

An jmmediate consequened is:

(3) For general va.&fi:.es:f? p, the 2% functions X} () (4, j = 0,1
mod. 2) deﬁneﬁ\\by the non-commutative symbolic product

XJ;% 32 = X '(uz) X,a, (1eg) - X;3 () -+ X7 p)

m]\ﬂép 2% functions 9% [q, 9’k () with the symbolic exr-

Jmession (1), are expressed in lerms of each other by sym-

N\ Dolic multiplication of factors whose values are given in (2)

V7 oumd (20, Any set of 2P Functions XJ with fived super-

screpls 1 8 dransformed into diself by Gy according o
the kaw

W=t 6}y o X = (— 1) X

Thus G merely changes the signs of the X} whereas G
merely permutes the XJ,
We now prove that

(4) If any one of the 20 sets of 2% functions X with Sixed
superscripls comtains 22 functions X; which are Iinearly
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related with constant coefficients then each X; vanishes
identically. At least one set of 20 functions X; does not
vanish and is linearly independent. Any other set is
proportional fo this one with constant factor of propor-
tienaltty.

Suppose that a linear relation of the form

o
Zj &gy Xy, ) =0 O\

'\
exists, On applying I, a new relation is obtained in Which
the terms with 5, =— 1 are changed in sign. By aﬁdiﬁ’g and
subtracting the two relations a pair of relations\is obtained
in each of which the subscript j, is fixed Proceeding
similarly with I, ete,, we find eventuaxlly\.?p relations of
the form a;..,;, Xj,...5, = 0. Since not.all*of the coefficients
are zero at least one of the functiong\J¥ vanishes identically.
On applying to this function the gperations Z: it is trans-
formed into each onewofv theastbrdyy, Whenee the entire set
vanishes identically. Not eyery set could vanish identically
since not every theta sqitare vanishes idemtically. If then
Xj:;i %0 no member{o} the set X* is identically zero and
the set is linearly ipﬁ‘&}!endent. Since all the other X7s are of
the second ordep,and zero characteristic any other A must
be linearly enggreésible in terms of the 27 in the set X% i. e.

,{Qi;’fgp () = @--j, ’fl,..jp () (& + ©).

Apgl@,{j fi}i to this and add to or subtract from the old relation
e\ fiew one thus obtained according as /, is even or odd.
The result is an identical relation

% i
aX;l.,.zp = ng..-jpalljﬂ..._.;'PA.IIJ%‘:-.JP-

Proceeding similarly with I;, etc, we obtain finally
o X () = @ Xi () and by applying the 7. the pro-
portionality of the sets X* and X¢ with factor ¢ : a; 13 pr{_;ved.

In order to exhibit the common part of the 27 sets X' and
to obtain the factors of proportionality certain formulae
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(ef. Krazer*! pp. 364-366) are necessary which here are proved
ab initio. The exponent of &4 general term of the product

H, 7L #y, 7'k @)
is .
(a, m+ 7/ 4+ (@, n+ 920 +2(m + /2, w4 7il2).
+ 292, utgwi2) . L
.\:\’
(a, m+u-tg)2+(a, *-nJgf2+(m+n+'r;,u+b‘~+-vm)
+(m —n, u--1,}

&

. ) S
If now we introduce new letters, s, v, of Summation from

This may be rewritien as

A
m+n = 2;&-!"6({

m—-—n——*2v+af («=0,1)

then all values of m, n Jre Uthtal 4 rgrg;n all valnes of g, ¥

W\\-’W

for « =0, 1. Agam the .exljonen can be written as
{a,2n+« -1-?2)*“2+(a?\?v+a)’f2+(2#+a+r:,u+v+':f”?

\\"’ +(2v 4w, u—1)
*2[2(a,f&+af2+vy‘2) 42+ /2 L /2, u-tv)

+2£<{,y+ a/2 4200+ /2, u—v)+ Qu -+ a-+ g, g7

Theséponentlal SEIH = 1 apad dE BN = (— )@Y,
]:é BOW « is held (g, 4’ also fixed) the summation for g, v

o~

Q ‘yields a product of two thetas, Summing finally for & we have

MR STOR R NG
= 2 VT St g, O (4 vhaa - e, Ol ().

This bécomes, on' replacing «-+4 by a new a,

- S0, 7'l () Sl 4k ()
(8) . ,
=, & U Sl 4, 0w vhoa Ha, O 1+ e
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For u = v, (D) becomes
() # {5, 1T ()
== 2 (=17 Ha+1, 0L O - He, O (20)ac.

&—0

The Equatlons (5) may be solved as follows. Multiply by
(—1)(-‘"? and sum for 4" = 0, 1, arranging the terms on the

right with reference to «. Then L\
o
2 =P g, ) 9l vl @) o
T "

= D e+, O (6 — viog - Hle, O (ot -+ vhaa - 2@1)(“ Ay

Now 2(__ 1)(«-—;&:3') is 27 if & —_—ﬁ, but.\v@mshes it e« § 8
1; N
Setting then « = # and replacing A\ater by « we have

20 & o9, Ol (erapnithdey QhyhT oo
= 2 (—1)E) &'k () 91, 7'k @)

74,

N\

©)

For w =1y, (6) becomes )
9r 9 [a+§; 0s (0)zq - & fee, Ol (22)oa
2 (— D) 82y, 7'ls ().

7

(G)
x'\ )

An imp r{,ﬁnt formula is derived from {(3) by replacing u, «
by u+v§1—_v:
o O° Ik k) o 7 )
D= S0 o le, 0 @l - 910+, 0 o

We spec-lallze some of these formulae for p = 1. let
(8). = 410, 0): (2 1)ea, Zy == |1, 0 (22023

20 = &0, 0]; (0)24, 7 = &1, 0]z (o

Then (5') yields

‘92[0;0]2 (‘l!-) = 2y t+aZ, ‘92[1;0}2(“) = 212+ Zs;

(9) ‘?2[0:1}2(?6) - £y Zo_"zlzig 19‘2[151}3(”) = '?IZU_ZU‘ZJ-'



94 11. TOPICS IN THETA FUNCTIONS

From these in twrn (b} can be obtained by symbolic
multiplication.

The values of the XJ (cf. (2)) are therefore

(10) X[? == 2(ZQ+ZI)Z, XO - Q(ZOJ-I)ZO?

X = 2t a)Z, X = 2—2). A
We have then the theorem: O\
an If e N

Zyy gy = Flayee a1y 000 0]2@“}%““.

e Hgy 7y 001 O}{ﬁ);a

and if, in non-commutative symbolg’
R

ard

— \S, -

Z’fl""?ﬂm ,Z,,J?I,Z;?3 S 'ZW’:”?’.?I“‘W == Zy gttt Zyp
S\

and e i, = G alin ¥ e

Xy :'"'j g, 8 =F Z— 4

then the w%,%s of the 22 functions X in terms of the
Junctions %

,\"'.s"' X" v=2". ¢

Jp Gty Tyt
T% *formul& {7) specialized for p = 1 yields

R \a[oo o () H[0,0] (11—2) = Zo (ot~ Zo (0) £ 20 (20)- Zu (&),
”\(’ 12) H01 L) H0,1 ] (—0) = Z () Zo{v)—Z, () Z, (),
QO 311,00 (e 4-0)- 1,0k (v —v) = Zy(u)- 2, (v) +2; (w) - Zo(v)s
S Gebo) H L (w—v) = Zy(w)-Z, () —Z1(u)- Zo (0}

These again by symbolic multiplication give rise to (7).

3z. Theta manifolds; the XKummer surface and
generalizations; modular families. The aggregate of
theta functions of order » with given characteristic, say the
zero characteristic (19 (6)), can be expressed linearly with
constanlt coefﬁcients in terms of n? such functions (19 (4))-
i »? linearly independent functions are chosen as the homo-
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geneolis point codrdinates of a point Pin a space 8,5, then,
for variation of w, -.-, up, the point P describes a normal
theta manifold My p» of dimension p. Any manifold of this
dimension with the property that the codrdinates of its vari-
able point can be expressed uniformly as 2p-taply periodic
functions of p-variables is either M, , or a projection of it (19),
The =? functions may be s0 chosen that % are even and
O are odd (£40 = n?) (cf. 20(9)). In this section only.)
the rase n = 2 for which the fanetions are even is discjléééd.
The manifold in question is then a projection of i!@,},}«.from
the linear space defined by the odd functions {cf,** Clka;p‘.l'i’, §1).
The even fanctions of the second order and zerg character-
istic, which include the theta squares, can \\all be expressed

in terms of the 27 functions \‘

) Zoy vy (s, "'!:1‘“31‘}: (153 7p = 0,1)
of 31 (11}, We set R\

@) v(p) = 2P o . 1

As the w's vary the poindZ runs over a manifold K, of
dimension p in Sy Since p functions linear in Z have
27.p! simultaneous ‘zﬁ\os {19 (9)) which divide into pairs - u
vielding the same 'point Z, the order of K, is m{p). For
p =2 this is(h& long known Kummer quartic surface K.
For general.p the properties of the manifold Ky ® whose
exist-encgiwas peinted out by Kiein have been developed by
Wirtinger 4.

..,;'!gs:é{)t:iated with K, there is a dual manifold Wy () whose
eleents are S,p-1's with codrdinates

(3) 1’.{’7,?1..‘.,),? (T)]_, ey Up} == Z’?l""h" (DI, Tty v_‘p)'
Evidently W7 is the polar reciprocal of Kp in the quadric

2 .
S 20 Zgpgy = O

The group G of transformations, w = u-+{ely, will,
according to 3I1(3), (11), give rise to a collineation group
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whose expression in Z codrdinates and dual expression in W’
. codrdinates is
W= u-t e, dy 2 = (— 1) Ze;

RS W = (— 1 Wi (e, € = 0, 1),
Since « as well as u gives rise to a point of K, or an
Syim—1 of Wy, these manifolds are each individually unaltered
by the coliineation (. The polar system of (4), a_cowrel-
ation of period two, is invariant under G,w whgr’;@e this
polarity and G generate an abelian correlation group,

I, ., of type (1, 1, ..., 1) whose 2% carrelati”g{ls’interchange
Kp and Wy, An equation of the polarity {4) (cf. 31 (7) for
{7, 71—=10,0) i RN

(6) S (w—v) &+ v} =:{0

By combining this with the’g:-'@i'é,r‘netric form of (b) the
equations of the 2% coryglationssppearias

9} 8¢, 'l (b —20) - Hle, & (e +v) = 0.

AN
Their explicit eqtka'{io’ns in terms of the cotrdinates Z, W
are furnished Dy 31 (7) or arise by symbolic multiplication
from the equations 31 (12).

The copselations of T, ., of period two, are either polarities
or nuli §ystems. The null systems arise from symbolic products
w%t.}ﬁu odd mumber of factors of the fourth type in 31 (12)i.e.
fxom the 0dd functions in (7). There are then By ==2F1(20--1)

\'\3 pgla.rm-es and Op = 2#-1 (27— 1} null systems in I, 5. The
2% points of K, and the 2% S,(pni's of W, which form
& conjugate set under I, ., make up a configuration (2%)o
such that each of the points (S, ’s) is on O, of the
Sy(p)_1’s (pOilltS).

An especially important configuration of this type arises
from the proper and zero half periods. \Virting'er " desecribes
its properties as follows. The 2% half period points are
multiple points of K'* of order 2*~* and the 2% half

period Syim—1’s touch K*® along a manifold Mp-$%, With
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respect to Wy the configuration presents a dual behavior.
Finally Wirtinger shows that with respect to A" the
Sym—1's of Wy are characterized by the faet that each
touches K, along a manifold M;~P" which lies in an Sy pp1,
i.e. each euts X, in an Mp'P on whieh M2P™ is a locus
of double points. Of the spaces of W, the w2 whose
MEP* s pass through P on K, contain the tangent space
Sy of K, at P and precisely m(p)/4 of these pass througfl\
an arbitrary f2,—s whence the K, and W, may be reg&i‘?ied'
as dual forms of the same locus. For p = 2, Ky the
Kummer surface with 16 riodes determined by the Kalf periods
ineluding »w = 0 and W, is a gquartic envelope b"r’h)lanes with
i6 double planes similarly determined, TieMNdouble planes
of W, are #ropes of K,, the plane sectiphg)of K, determined
by the theta squares, which touch K)along conies. The
planc v of W, touches K, at an 3Ma ot point whence W, and
Ky are dual forms of “tr{l’e e i,slgirche. .

The involntorisl elements Qi‘f&zﬁp "ard B0 the same pro-
jective type, For p = 1 the'three involutions and their fixed
elements with multipliers = 1 are:

A\t -
' . N Ih = 2 Zi=+2
w o=y {0,3}2 7 — —Zl; 7 -—ZU;
&) o= ”&:{\10} . Zo = Zi. Zi+ Zl: = -+ G+ ZI.};
‘~'§J‘ Rl = 2 e Fl= — (G Z)

LS a2 gid = —ill iz,
N o |

The corresponding canonical forms of the collineations and
of their spaces of fixed points for general p are obtained from
these by symbolic multiplication. We observe that each
collineation has linear spaces, Sy(p—p (&), of fixed points and
is the harmonic perspectivity determined by these two skew
spaces. Two involutions defined by {d}s and {e}s are inter-
changeable and either transforms the other into itself. The
two fixed spaces of either are invariant under the other and

T
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they either are interchanged or each is invariant. The follow-

ing theorem states the situation:

(9) (a) If {8)s, [e)s ore azygetic, the six spuecs, Syip-u (),
of fixed points of the collinealions defined by {01y, {e}s,
{0 e}y, are all skew to each other.  The line from a point
of one space belonging to |8}y across the puir belonging
to {€ls ¢ incident with all siz. The locus of the = 2"
such lines is an M2 _; of the type defined by a maty u\of

two rows and 207 coZunms Such a m(uujm‘r? is mff &l in
two ways, the one mlmr} consisting of ¥ “'?mm the
cross ruling of & Sp-a_Js. The siz fiwed mes}a beluig
to the cross ruling and meet each line wn thrée fugdrmonic paies.
(B If (8%, {e}a, (04 e}s are syzygetic thind cvist four shiwe
gpaces Sy p—ny such that the six Sy{}j—\‘kz\';\uhr‘/ﬁh rontain He
vespective pairs of the four are the six fixed spaces. Tuwo
complementary pairs belong to, the” same half period.

The theoren reqmres }%%‘}%&]ﬁ!#aﬁ?roﬁgﬁmple azygetic and
syzygetic pairs since all ayygetlc and all syzygetic pairs arc
conjugate under the modular group to be introduced prcsent} G
For an azygetic palr x,ake that for which 6] = 1 and ¢ =
while all the other &s and £'s ave zero. The six fixed Spaces

are precisely those of (8) with arbitrary #s,---, 7. The
matrix in question is

oS g
2\ G .
(10) .\\ ll Zl,,2 . ll (g, -+, 7p = 0, 1),

']; revtwo rows define the fixed Sy(py's of {d}y; and those
\"'*o:ft {els, 10+ €} are defined by linear combinations of the rows
Wwith parameters 1:1;1:—71 and 1:4; 1 : — i which proves
the barmonic property. The elements of the two rows, or
any two independent linear eombinations, can not vanish
simultaneously whence the spaces are skew.
As a sample of a sysygetic pair take 0 == 1, & == 1 with
the others zero. Then the six fixed spaces are

|

(11) T = Zoy = 0; ?00 = Zy == 0_ Zge = Zn .
Zuﬁn Ju]_-"'-TZu:O’ 2'10:’201=0?
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with variable indices #s,---, 9, to be supplied. The four
spaces of {9(b)) are then those which covtain respectively
the four vertices of the tetrahedon Zy, 2y, Zyn, Zi,, with
variable indices #s, ---, 7p to be supplied.

Of particular interest always are those points which take
up, under the operations of a group, a number of positions
smaller than the order of the group. These are necessarily
fixed points of some of the elements. A point of K is fixed),
for the element, + W =y {€},, When 2u == |¢}, 0r1£5{€}'2?‘2, ’
i.e.u js a proper quartic peried. If [&], is a properyquarter
yperiod for which 2{s}, = (¢}, then there are 83’3& proper
quartic perieds, namely O
(12) feh -+ {0, &Y = 0,1,

N :

all of which when doubled are cangﬁ}é& to {¢},. Since
e}, == —{¢}, the quarter periods 34}, and {¢}, determine
the same point on K, or moresgenerally [e}, - {d}, and
{et,+ {0+, detemninewt?ﬂg%g%éb PO R K. Hel};ce
(13) The two fixed Spip-1y's.qf the eollineation, ' = u+ e},
each mect Ky in 2223 points, each point being defined by
the pair ofpropexg@a%ter periods {e},+{0},, [}, {0-+e},.
The points Ppantl Pr on Ky, with parameters {3}, and
{£), in (12), @2"in the same or different Sy (p—1) '8 according
as {8),, AB)S are each sysygetic or each azygetic with {e},.
In o @urticular Syp—y the quarter period configuration
of 2 U points admits @ group G which is the
'Jidci'or group with respect to Ie of the G consisting qf
“Nhe cements Iy for which (s}, @ syzyyetic to .{8}2. This
N\ configuration and ils group corvespond in the Jinile geometry
fo projection and section from the point corresponding to
{¢lye The configuration dual to the 22(2=0 points on
Syipp () s cut out om Svip—n (1) by the quarter period
spaces of Wy which contain Svp—y) (—).
This distribution of the gquarter period points between
Svp—1{+) 18 a consequence of (9).
The collineation group, Gy, has integer coefficients and
therefore is independent of the moduli, ay, of the theta

7
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functions {(1). As these moduli change the manifold X,
changes and describes a family, Fj(a), of manifolds K, each
of which admits the group Gp.. We seek that group, G(p),
of collineations which transforms thiz family info itself.
G{p) must contain (X as an invariant sabgroup and must
transform the 222! involutions of @p in such wise that
syzygetic and azygetic pairs are invariant. The order of (r(p)
then is not greater thamp 229 . Ng — 2% . 9" Hop o Hop g o0l Hl’
(22(7)). On the other hand under integer linear traﬁafo:-—
mation of the periods the theta squares, and therbfore the
functions (1) are permuted according te the law (Kramr
p. 181),

(14) Py, 1’ b{u)g == C*.¢720.9* [1}_, AV (o,

where C is constant with respect tp: u,\ and 7 is eonstant
with respect to [z, ki ]g whence e2V ,ﬁgures as a proportmnahty
factor. The 7, ' amglggpaﬂ%ra%mﬁ oh 7, % in 24(1)
Hence the elements of G(p)wiot in &y are precisely those
which arise from transfopmation mod.2 of the periods, and .
the order of G(p) is preeisely 2. Nc. Since G(p) can be
defined to be the m\&x'imal collineation group which trans-
forms Gy, with iteger coefficients into itself, G(p) must
likewise havesfumerical coefficients which are determined
presently. Gy is generated by the involutions attached to
the points i the uctation of the finite geometry (22 (10)).
For 13.,%\ ; there are three such involutions each of which
1ea?vgs."one of the three elements (8) unaltered and inter-
(hgnges the other two. Corresponding elements of G(p)
(¥ = 1), to which we add the identity, are

JI),D J{},l Jl,l) Jl 1

= 7 Z %+is Ltz
A= & % i%+ 4 —n44

I

J{g}‘

These modular involutions are of period 4 in the space Zy: Z,
but, in each case

(15) Jik == Lix
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so that in the factor group J;x gives vise to an involution,

We summarize the above:

(16) The collmeation Gy of K, is an invarient subgroup of
a collineation group G(p) of order 2%. Ng which leaves
unaliered the family Fp(a} of theta manifolds Ky which
have the sume Gy but variable moduli a,. The factor
group of Gy with respect to G(p), the modidar group,
is the permutation group of order N¢ of the members of )
the family and it arises from the group of integer hnem’ ’
transformations (mod. 2) of the periods. \Y

We recall (29(3)) that the half periods in, féhe basis
notation can he identified with those in the ch\ractenstm
notation by the parallel schemes:

Gi: Piz2, Pagy Doy -+, Pops, op—2, Fop21, 29, Popir, opte;
5 N
Ga: Pu, Pizy Por, -+, Py, - -{; Fop, op1, Popis,1;

an Gyogy=1, &= %\’@dﬁla]nﬁlﬂara’:yibrgm 1, gp=1,
\ &y == £ = = gy = 1
Go: el= ey =1, s 3£ =1, 53_54,__1)...

<: g === 1, =1, 61 = 1
1t is necessary only to observe that the syzygetic and azygetic
relations are thesame in the two arrangements. The permatation
group of thesbases is generated by the involutions attached
to all thg\g"g;?iﬁts of @, and G, except the last point of Go.
H to t]:gs} generators we add one with four subseripts, say

(18)‘}“\ Poyss, or & = & == 1,
the entire group is generated.
We consider now the element of period 4,

(19) J(s, == 1): Z,

’
0’?2 - Z 7}? Zl’;ﬁ nee ?'Zl'rjg

This has the same spaces of fixed points as J?(e1 = 1)
== I(e{ = I). Since its square is in G,» the element J
figures in the factor group as an involution. We write the
involation I, (cf. (5)) in the form '
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. nd’
By, == (— D) Zy Bty dy
’ e (') . N
153" " %p - ( ]') 4 71?;-:: "ﬁp“‘l’d]ffs' "d.r;'

If 6, = 0, 0 is syzygeiic to ¢ = 1, otherwise azygetic.
Baut the transform of Ig by Jis Ipif 6 — 0 and is Ty,
if 4, = 1, Hence J transforms the mvolutmna Ly amonge
themselves precisely as the involution attached to a poing In
the finite geometry transforms the points of the finite b’pxi?’?
The required generating invelutions of the modalar gmup are
then obtained by attaching multipliers 1, 2 Iespective}v to the
—+ fixed spaces of the corresponding involutionstol Gou.

We apply the method set forth abowi 1 the apemﬁt
case p= 2 and the Kummer surface Ks. Ti{(; proup (o= o &

16

is generated by R
Ty, 10 Zyo,00 DXNo,oo o1 on
Zig = Zno Zoﬁ, VAT Zin
oo, Do e dradyyody 2,
Zy = ZonT N Zy’ Zon
Zf1 - —ZB{ —Zn Z(n Zm

The modular groug\(?m a: is generated by

Joq,m Joo.t_u Jun.n Jn,@_ﬂ_ﬂ_ Jm e

Z[;U ,:\ Zoo Zoo o (wt Zyy Zgo+ 1 Zn

(21) % & 3Zln_ ‘Zli)_ ’c'.Zm' i‘:Zlo“I‘ Z{n_ Zm"J[‘ P
= Zn' %' (Zy Zut+iZ iZwt Zan )

N NZh = iZ, iZ, Zi Zoo+iZy, iZ+ Zu

\JThe generators are those attached to P, Py, Pess Pacs Poa
and that attached to Py == Py, is in this case duplicated.
The four even functions Z; are of the second order. Their
quadratic, cubic, and quartic combinations are of orders 4,

6, 8 with respectively (ef. 20 (9)) (4*4-22)/2, (64 2%)/2,
(82—’;- 2%)/2 that are linearly independent. The numher of such
corbinations is respectively 3.4.5/6, 4-5.6/6, 5.6.7/6.
Thus there must exist one quartie relation on the Zyj, say

2 i T Lo Zs Ty = 0 (i A k41— 4).
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This must be unaltered or at most changed in sign when the
fuvolution fug.1o (20} is applied. Hence only terms of the same
parity in the first subscript cal oceur; similarly for the second
subscript. If these parities are 1,0, j-+17 is 0dd and either
J=0or1>0, Butthen the line Z,, = Z,, = 0 would lie on K*
whereas, heing a fixed line of Zy,10, it meets K* in only four ,
points determined by quarter periods, Parities other than 0,0
wonld lead to a gimilar situation whence the terms mustshb
made up of /;‘, and the produet Z,, Z,y Zoy Z:. On ftpﬁung
also the permutations (20) the guartic relation must kave
the form
o (T Ty Zhs -4 Z) 4 2 ey (i 2y 22
(22} + 2oy (Zon Zip - Ty Z4h) "y,

+ 2eaqn (Zgu Z121 + leo ZO21) +4 8o Zwigm Zin Zyy = 0

If now the medular substitutinnq':j"]'n {21) are applied to
thig form it must be transformed™into another of the same
type in Zj; with cnefﬁu@ﬂ?@b&m’ﬁmﬁhﬁfﬂ(ﬁ Mnear in the o's.
The IIlOdlﬂd] group of grcl»er 61, the factor group of s
with respect to Gy ) Appears as a collineation group on
the modular forms i.-, M. The explicit expressions of
the generating mvoﬁhtmna are

Joo, 3o Jbo 01 oot Ji1.00 Jo1 00
f $ 7
ey =&Y oy oy teg— ey g b0y
, "
Ep(< —%e  Fip % G Cu &y o p—et—HBy
()‘3)“01 = dn  , — a1y By _a10+“01——4801 —8og—ey
\ 3 "“ll == @y — @y gy —Boy—ay  —tgotan—R

Bo==—8s —By -—Bo —2eg—2an —Je—Iley

The ratios of the five coefficients of K» in (22) are func-
tions of the three moduli a; and they must be connected by
one relation. The four linear conditions on the coefficients
which require that Ks have a node at z; == Z; (D) determine
the ratios of the coefficiénts in terms of the three ratios
of z; If the latter be eliminated the resnlting modular
relation turns out to be (cf. Hudson® p. 81}
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(24) ad—e (@3t ed tof —B) + 20,0, 0y = 0.

The modular group, Ga, it (23) is the collineation group
whieh leaves this cubic spread (24) in S, unaltered. The
lack of symmetry with respect to a group isomorphic with
the permutation ge is rectified in the next chapter.

33. The theta manifold K, (p = 3). When p = 3 the
generalized Kummer manifold (\A

NS ¢
(1) Zyjy: (i1, g, tg) (2, g, k =2 071},

is a X3 in a linear space 8. The gumadratic; Chbic and
quartic combinations of the 8 Zj of orders'4, B, 8 are ex-
pressible respectively in ferms of 36, 112, 260 independent
functions, The number of such combina mﬁs is 36, 120, 330
respectively. Hence there are 8 cuch pelations on the Zi
and 70 guartic rela,tmns w]nch are ‘dentically satisfied for
all values of u, i. e, K b?grbmoix qln'i'O quartic spreads
in & which are ImmHy mdepe‘ﬂden %f cach of the 8 cubic
reiations be multiplied by @ach of the & variables, 64 of
the quartic relations are*qbtamed leaving 8 quartic relations
to be accounted for \'ertmger (™ 8§ 17-23) shows that all
identical relaticnsdamong the functlonq Zyy are consequences
of these quartm\relamons

We shall Je.jmore coneerned here with the cubic relations.
We note,(agfor p = 2, that, due to the existence of the Gk
of chan“g‘e of sign in the Gy, w' = - {e}s, there may be
dernfed irom any one relation another in which the terms
have the same parity in each of the three indices. Further-

ore from a cubic relation in which the terms have one type
of parity there is obtained, by the operations of the per-
mutation &y in G, eight relations in which the eight possible
types of parity oceur. The poss1ble terms of parity 0,0,0

are of three kinds, Zo, Zow Zion, ZavoZore Zaro. Instead of using
tripie subscripts it is more convenient to set

(Q}ZDUO - Z, ZIOU = Zl) . .Zol_(l === ZQ! Zﬂﬂl — Zﬂ,
Z = Z, Zon = Z,, o == Zy, Zi = Zu,
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It may be observed that we have chosen the single subseript
notation by number-
ing from 1,--., 7 the
points of the plane
in a finite geometry
mod. 2. The seven
lirear triads then
give rise to prodnets
ke Zy4o Zoso Z110 OF
parity 0, 0, 0, The
mast general cubic
relation of parity Ot -
0, 0, 0 has then the ™% A N s
form
(== a 2% Z{a; 0+ . aTZQ}
T ttgey Ly Zo Zs‘i—fﬁsa Z Z Lyt a9 2y 2y 2
+ o0 2 Z Z;d Laﬁ"hl:%gai{; oZr?g-;;n“w 2y Z: %
+ wy5e 2, Zr ng_

The involutions of Gy arigé\by addition of unity te one, two,
ot all of the subscripifs’;}\ According to (2) they are in the
new notation: NI

1), ENZ2,) (Z Z) (Zy Z5) (21 Z3),

BGE (ZZ,) (Zs 2) (2, Z3) (Z5 1)
] "\"\rs = (ZZS) (Z Zﬁ (Z /1) (ZGZ—),
(4) \\ 14 == (Z2,)(Zy Z3) (2, %) (21 ),

(3)

K\ = (£2;) (% 2.) 4 Z,) (Zo 1),
NS ]6 = (£ 2,) {4, Zy) (Z, Za:} (Zs ),
Q~ I = (Z7) (% Z) (% Z3) (Zs Zs)

We observe that Z; contains the pair (ZZ) and the other
pairs are, in the finite plane, collinear with Z;. On applying
these to (3) seven new cubic relations, ¢, =0, .-+, (f =0,
are obtained with the same 15 coefficients « as C=0. If
the cubic relation of parity i, j, k is multiplied by Zy, a quartic
relation of parity 0, 0, O results. The addition of the eight
such quartic relations yields the following important guartic
relation of parity 0, 0, 0:
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L'= «(Z'+ 24+ 7)
90 (BN BT T T 2T
®) N (BB LR~ B R B L)
. 4wy (2, 2o Zy+ T 2y loy Zig) A -
A doyg (F2, 7 Zy- 2 20 2 Zy) = 0.

In L*the pairing of terms with coefficient «; is given by J;
in {4); the products with coefficicnt e arise trom @ SO
triad and the complementary tetrad in the finite plane. gipte’
the arrangements all depend on collinearity in the ﬁnig.eﬁ;l:me,
each of the 15 parts of I with a given coefficient ifvariant
under g . 9 \

We observe that 8/8Z[LY] = 4 C. Sinc% W is invariant
under Gy alse 8/8 Z;{L4 = 4 C;. But C=467 - - 0 for points
ou K;' Henee \

(67 There exists @ unique quartic spreqdhd’ in 8 which conlains
K as o double ol TI”fegn;’f-})e group Gy of K, s the
canonical form, the Y@’&;%ﬁ&%ﬁ%@ggﬁgﬁ Lemselves modalar
Forms whose ratios are modilar functions) arve subject fo a sel
af 63 cubic relations wlich are in correspondence with the
63 half periods. ¢ \i’

The latter statgment follows from the fact that the two
8y's of fixed pqiﬂ‘té" which belong to an involution f. of (e
meet Ki' ip{quarter period points (32 (13)) which form
a Kummep~donfiguration. Thus such an S; meets L* in
a 16-ngk ~quartic surface with a (fu (p = 2) and there-
tore &3knmmer sarface. But the coefficients of a Kummer
sufface satisfy the cubie relation 32 (24). For each of the

# involutions in Gy, i. ¢. for each of the half periods, there
oceurs such a eubie modalar relation,

It may well be that the cubic relations alonc define Ki*
and that the eight additional quartic relations mentioned
above are necessarily satisfied when C'-= ¢;==0. In any
case the modular forms e are well defined and will be iden-
tified later (Chap. IV) with irrational invariants of the ternary
quartic. For this generators of the modular group ave
necessary. The group &xe of period transformations has the

~
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order #!36 and the gronp G(p) (p = 3) of order 8!356.064
is generated by
ooraag Sencs Jnovger Jowoan sz Towweo  Foorone_ Tinaor
2= 7z Z Z 4 iZiZ iZ+Z, iZ+Z iZ+Z,
Zi= ik A A il AR Z iZ4E AZ+ 7, 1At
oy i e iHs AahaZy iZatZy iZat Ly 2t T
Ziz= Zy  Zy il il it D ZatiZs Z-iZy ZiHZ
(T Zy AZy AZ 7y ZatiZds ZHiZe BHiZ 1A AN
Zim iZ Z iZe A ida iZybTe FakiZs Zekiln
b ide Ha A Fiide Zikile iZoVl: ZREZ
Zi= ik, id il iMs ZbiZ ZiviZ zﬁ+-i’z?.jz._{%«;z;.
[e

N
I

Ag}li]l "T?;?:-.":?\{IJ?JPE b -!-'r;j}r, fmn (1 iIl Gb;} "‘\

These modular invelations may, by interchah@ing the roles
of ¢/, (2, in 32 (17), be identified with the in@?[’utions attached
in ovder to the following points in thg’p}tsis notation:

(8) P, Poyy Pag, Dis, Pza;,l?-i;,'Psf; Pagsse

7t these operations are wppidtigalibitaty brgranstormed fnto
Li, of the same form as LA ,’i’ru't- with coefficients e« whicli
are linear functions of thed@s. Thus there arises the modulay
group of order 8!36 \xhu}n is generated also by eight involu-
tions cr.}rrcsyouding‘th\t-hose in (7). They are

—Ser, —Deer N TERRA

=1, 11! e, | —ety | G— g | G—ii
R R P\ : e
= | Nt — My —Cf g - -t figr | B ~ORT tgsy 1T BT BrE
| . | & —pteg—rtgag | e Gy ~fiss | Cy—Giy ~fhazg 3 Tt TfsT
! { 2 | e
: ; [ [ ~fTa— Fiyag
fy Oy 2 B Ll I L R
i
. ! ] ey —fi L
7 £ty —ts—Tiqsn | —8a—e, —ara—tam| 4~ ~Hiss
. - R I Ml
' b —mytms—tigge | Byt Tase [0 s~y g 4
S
3 i ! ' , T
Ay == ’ l C B -y |~ ey fgag, a0 Gat R
. H H
H ] 1
R ! : e e i Cant
(9 o il et —tser |_5¢J_'r G- gl -G O Bgay -Gy TET Gt
" oL ) i _- e | Myna— ="
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The first four of these generators yield only the changes of
sien indicated. In the fifth all of the terms are given. In the
last three the terms indicated by --- arc to be supplied asis
done in the fifth with the group of terms ayaz, yps, ¢y, Sugrs
(10) Under the modular group of order B! 36 the modular
Sform o is one of a set of 135 conjugates, each one imvariant
under o subgroup of order 2°.168, which are pm'muted\
in the same way as the 135 Gipel planes in the, finite
geometry under Gwc. O’
To prove this we first observe thut the 21, -+, {gq,ﬁ"a’r,ta{:-hed
above to the points of a finite plane (mod. 2) maf ke permuted
in 168 ways without destroying the ]ineari@;\of triads, In
tact the collineation group-in the finite Kla‘ne iz of order 168,
These 168 permutations are collineatidns in S; which, with
corresponding collineations on e, (e and s, - -, Gise,
leave L‘i, and therefore its manifold Ki' of double points,
invariant. This (s on the «’a3iust be the result of a period
transformation on ‘fﬁ'é"‘%béfiqgjﬂ'afg A %roup which permutes
the seven modular involutiens Jooo, i (3,7, F0,0,0) in all
geometrically possible{ ways. These seven involutiong, four
of which appear in\‘t}ie fiest columns of (9), are themselves
merely changehof sign of the «'s. They are permutable and
are subject ’tg‘ 1o other relation than that their product is
the identit{.; These seven involutions generate an abelian Gs.
The entite’ G- (o == G o (In which &, iz an invariant
subg@ﬁ) is determined in the finite geometry by the Gopel
plane with seven puints, {000, ijk};. Since (cf, 28) there
~lare 135 conjugate Gopel planes, G ,eq 15 preecisely the sub-
\/ group of the modular group which corresponds to an invariant
Gopel space and « is an obvious invariant of this subgroup.
This theorem is fundamental for the transition from modniar
forms to algebraic invariants of the ternary quartic. We
identify similarly (Chap. HI) the leading coefficient of the
Kummer surface with one of g conjugate set of 15 Gopel
invariants {(p = 2),
We give finally one of the 63 cabic relations on the co-
efficients & of Z: One of the fixed spaces of Lo 100 18
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Z, = Zy = 23 = Z7 == 0, The section of I* by this & is
the Knmmer guartic surface 32 (22) in variables Z, Z,, Z, Z,
and coefficients e.

The eubic relation 32 (24) is now
{11) as-—ur:(a§—|—a:;;+az—ul)d)—]—2a2a3a4: 0.

The 65 conjugates of this may be cbtained by applylng the, )
generators (9).

Some further properties of Ky parttcular]} with refenence
to the 61 M2's dlong which K;' is tangent to the" 4-fold
linear spaces of Wy (the cxtension of the conies m\t,he tropes
of the Kummer surface) are found in Chap, I¥) Here and
throughout the admirable aceount of W 11:Ism\gér“’ should be
consulted.

34. Algebraic and abelian funetzons If a canonical
system of 2p euts is drawn on the, Riemann surface 7' defined
by an algebraic curve, F{(%,% ‘jbm‘ﬂ‘b{}?‘ WAHE Y and genus p,
the p normal integrals of the ‘first kind # = Uy, o, Uy have
simultaneous periods on eael” of the 2p cuts Whi'ch coincide
in form with the 2p,périods of ¢ (1) in 18 (6) and which
satisfy the conv ergnnce%ondltwn of 3(1¢) (**§15). These normal
integrals are
& o = [wite pawi, =1, p)

\s

Al

whers g{zi.;\-,», ¢p are properly chosen canonical adjoints
of F'(pf;2), The p(p+1);2 moduli a; which arise in this
Wﬁi‘rﬁm F (e, 4) = 0 must depend only on the 3p—3 (p > 1)
algebraic moduli of F. The theta functions with a period
scheme thus defined by an algebraic curve are subject to
(p—2) (p — 8)/2 conditions and are called abelian theta
functions, The single condition for p =4, as given by
Schottky, is found in 57 (15); for values of p > 4 they are
a8 vet undetermined,

The theorem of Abel is of especial importance for geom-
etric applications. This states that if e (x = &, y == 8) is
a fixed point of 7 and =z, ---, 2 a variable set of n points
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on T which on the curve F(r, y) = 0 is in a fixed ¢" then

f=n
1

(2) Z ot =i
i=1

where m s constant as the set » varies in g% The eqna-
fion (2) stands for the systcm of p cquations obtained Py
setting w, m == W, Mm; (J‘ =1,.--,p). The possible vap mtlon
of m indieated by the == sign i3 duc to the possible, mrid’rmn
in the paths of mteglatwn on I from « 10 i SAuother
version of the theorem states that if »iss -4 2 and
Ti, o+, %n are two sets in the same g7, i, G\‘tlu zeros and
poles of a rational funetion, then

i=n N

(3) >) it = D5

.ll_l.

Conversely (3) is a sufficient, cundltlon that the two seis
are cqnivalent. lfwt;}]ﬂbﬁé}@lﬂ%ﬁghn not special (ef. 1¥),
the p equations (2) deﬁzm.umqunly the position of the re-
maining n—+ = p poats of a set of g when » of the pomts:
are given; if ¢* is¢special and n-—r = p—1 then ouly p—i
of the equations<{1) are independent.

Let u (o) bé'the normal integmla of the first kind taken
with fixed 1awer limit at « = «, # and with variable upper
Hmif ass in?) z,y on T or Fix,y) = 0. Then the funection,

(4)\ \ ) 3 (1 (0)—e)

‘mth paramelers ey, - - -, ey, regarded as a funetion of position
\ ) of o on 7' is known as the Riemannian theta function. The
moduli of # are of course those defined by the w's on T.
This Riemannian theta function has, for general choice of
the parameters e, p zeros on 7 at points %, ---, 7 which
are connected with the parameters e by the congruence

® e = JS w ()t

where Xy, -, ky, the so-called Riemamnian constants, are

independent of the parameters ¢ and the zeros g (cf.* IX
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£52-7; FTE527-32), Tf for example ¢ is an odd half period P,
for whiclh therefore 9, () = E.($(n— Pp)) is an odd
function, then the zeros of 9 (u(o) — Pu) or of 4y, (u(0)) are.
in additivn t0 ¢ = e at which u{o) = 0, the p—1 points
at which F{x, i) =— 0 is tangent to one of the 2»~1(2¥—1)
contact canonieal adjoints, ¢, (2, ). If however e is an even
hall peried and 2. the tangent to F' at ¢ which meets T
in g — 2 further points { then the zeros of the even fmw\
ton &y (mm) are found at the p contacts of one ab the
20-1 (20 - 1) adjoints, W, {(z, y), of order ¢— 2 Which can
be passed through the points § to touch ¥ againc‘al p points.
It in the odd case ¢m-le is set equal to Y, ¥) then for
any two halt periods I2,, P, the function \‘{?n (e () % (1 (),
a uniform funetion of position on 1, h@ fhie same poles and
Zeroy as W, (o, yi i, () ¥) whence ¥

Such radicals of rational functmns as ean be expressed as
uniform fuuetions of () are called root jfunciions. The
general function @{“'\itﬁis character is discusscd by Stahl
("7 p. 228 (IV)). X\
From (4) an@ X5) there follows that in general the function
» \ ] J=p
{7) :”\‘."‘\ Y (u(ﬂ) — 2 u(y)— 3‘5)
Y = :

2 8

vanigher only at the p peints o = 5, -, 9p on 7. If
,hmxc,vel the p points 4 are on a canonical ad;cunt g then &
o (7) vanishes idemtically, i e., for the values u determined
by all points 0 on 7. In pa.rtlcular, for 0 = %, a point

on the adjoint ¢ determined by arbitrary i, -« -, fp-1, & al80
vanishes whence

f=g--1
(8) 9( i‘ u ('?f;)'Hﬂ) =0

ji=1

for any p —1 points 5.
The determination of the p upper limits 4, when the lower
limits § and the ¥/ are given in

QY
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.J'l

B s U (v == 1o p),
J

=1
is known as the inversion problem. Siuce 3?};«; g (1) =l d))
there follows, again from (4) and (5} that the requived
points 4 are the zeros of the funetion

A
Ty i A o
Hulo) - 2 u(d) — U — !;). ()
=1 ) e\
o : Y
The selution is in general unique. It however thell’s are

0 chosen that this function vanishes identieally i e, if for
given points & the I7s are such ay would :i.l’iﬁ"?;\in (9) from p
points ¥ on a canonical adjoint then opeMr more of the
points 7y, -+, %p of the zolufion can .b'gi}Kf.akez'l arbitrarity.
It is by wmeans of this inversion pro}gli{m that the p remaining
points of a set of ¢» in (2) or (3)Jare dctermined when
points of the set are given. Eai*the prqurtics of rational
and symmetric functioy HRY P ifates =, y of the p
points 1 as abelian func;iﬁff%' of the U''s we refer to Stahl

BT ) 4
(57 § 36). .\.\\
L\
\&"
x;\“
©
O
>



CHAPTER II1

GEOMETRIC APPLICATIONE
OF THE FUNCTIONS OF GENUS TWO

The theta functions of genus two arc necessarily of the
hyperelliptic type defined by an algebraic eurve on Wluch
there is a 4% (cf. I1) with 2p{-2 = 6 branch points{ There
are two standard canonical forms for the hyperel]{ptic curve
of genus p. To obtain the first, of greater geométric interest,
the curve is transformed birafionally in amsh vwvise that the
g% is ent out by a pencil of lines, x wtﬁe— 0. It is then

a carve H, P2 of order p+2 and geupsy with a p-fold point
at (0, 0, 1) whose equation is N

2 \»ajww b.ra'uhbl org.in
HP™ = fo 2 dez T b eedl 0,

where f; is a binary fom{ of order j§ in x, @, For given
value of { = a,/2; the two further intersections of the line
on O are separated b}* the irrationality

Gy —F (8, 1) - fa (8, DY
= :Rﬁ\{_' a) -+ (F— e} = {(o f)7ptEILe,

This Iat,ter\canomcal form, 22 = (e $)?+2, is the one commonly
emllloy‘ed in the study of the hyperelliptic algebraic funetions
and Jtheir integrals, and of related transcendental matters,
The. birational moduli of the curve are then the absolute
projective invariants of the binary (2p-+2)e, (effr+e
35. The figure, P;, of six points on a line. For
= 2 the fundamental binary form of order 2p-+2 is the
sextic
® @8 = ag(t—e) - (b—ee):

The group, Gp,1 (cf. 15), is, in the absence of Cremona trans-
formations on the line, merely the permutation group, ge:, of
115 8
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the six points e, .-, ¢ Jis invariauts ave therefore the
usual projective invariants, rational or irrational, of the hinary
sextic. The complete system (ef. "1 $3) Is most conveniently
determined n terms of the 15 irrational (iipel nvarianis

() (i) (kD Gnn) == (e} (en — egp Lo — ) ~
The even subgroup of gs is peeniiar i that it ummi\m
two distinet systemns of six conjugate ikosahedral <l 10“]}\\
In the first system the subgroups have the m\]l\uhm s as
invariants. In the second system the -ubtr1m|p>~ arixe (rom
the six essentially distinct ways in which sl,}\ ,opocan be
identified with the six diagonals of an Mwsahedron. The
latter system is defined by a set of six Aitional invariants,
RS
, B, (0D, ,ZL“,F
due oviginally to Joubert (for defewmea ef. 7P We give
wiww.dbr auhhr‘al y.org.in -
3 4 = (25) (13) (46) +YB1) (42) (36) -+ (14) (35) (26)
m<"+ (43) (21) (56) + (32) (54) (16).
e
Here and hereh@éf" we avoid lists of conjugate tformulae
by giving merelyya sample along with the generating sub-
stitutions whigli produce the entire set.
substitu@g?é“’in cycle form are

.;4).:§’": (12): ({ DY (BE)(CF),
(23456); (ADBFE).

Tn this case the

AN
‘An odd permutation also changes the sign of A, ..., F.

The rafios of these six irrational invariants are functjous

of three moduli and therefore subject to two relations which
are

(6) A+BH.. 4+ F =0, AP 4...+F =0,
Other irrational invariants are the following:

" A+ B = 4(51)(42) (36),
- A—B == 4[(53) (41) (26)— (34) (25) (16)].
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1t 34— B ==0, the pairs e, es; &, c; &, e; are pairs of an

invotution. Moreover {(cf. "1 p. 168):

(7Y The tnvariants, 27 4% 2/ AY 3 A% (3 A%, and [[(4 — B)
comstitiute « complete system of rational integral invariants
of the linary sextic, Pa. The square of I is reducible.

The identification of this complete system with a classic,
system is given in (¥ p. 317).

The 15 three ferm relations among the Giapel 1mamm‘bs
{ef. 30 (14), 28(11)) are now according to (8) a consequence
of the one linear relation (5). This invariant theary«ﬁf Py is
based cntirely on the 15 discriminant conditiong‘g*—e; of .

36. The figure, r,,)b, of six points injépace and its
congruent figures. In space Sy w:tlk vitual codrdinates
Yor -y Y} S0y -0, Gy siX points g, «-‘, qs are associated
{ct. 16) with the P§ of the precediug séction. The points (Jf
ave on a unigue cubic norm curve C* and have on C°
parameters # which aledgwa%ﬁnf to Pb With properly
chosen factors of propartwﬁa R points ¢ there is
a bilinear identity in Epd of the form

W (@) -Qsl)br e o)) = 0,

The determinantSyformed for four points ¢ are then propor-
tional to tho,a& formed for the two complementary points e.
With ¢ defied as in 29 (B)

N\
(2) \~ 4 /TR Q’H & €ijkiman * (em en)-

TL@ Iﬂ ojective invariants of (% are composed of such deter-
“nfinants and are proportional to corresponding invariants
NZ: 7

of 1.

We pass then at once to a study of the set G5 under
regular (remona transformation. If the cubie transformatian
Ams; has Flpoints at ¢, ---, g+ and inverse Fpomts at
1, - 94 and ordmary corre»pondmg pairs, gs, g5 and gs, g6
the“ Qb and @F are congruent under Ajyss (15). A surface
of order y, with multlphClTY v; at ¢; is transformed by Aissa
into a surface of order y with multiplicity vi at ¢f where
(15 (4))

gv
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vi = 7i+ Ly2s (Lisas = 2p0— 11—+ — V),
3 Auesa: ‘,"j‘ =y f=0,1,...,4; =205, ),

The linear group, gss, with integer coefficients is generated
by this element 4334, and by permutations of y,, - - -, ys Which
will be written in eycle form. The group has the invariant £
forms

@) L=dr,—r,— 72y Q=2y—y

” AN
17 N
By combining generators Ayq only three types Jof regular

transformation with six or fewer ¥-poinis am‘ ohtuined
(T II p. 863), namely

12 \\\2 L
5 —1 o 50 —2 —1
Fals 0,—1 0 l —2,—1 —1
®) 210 0 Ll dtir?uhbﬂal‘g' org.in— 1 —1,0
R K
Mele —2,—1

The numbers vyi@oﬁt an array are the pumbers of F-points
(direct af the %top and inverse at the left) of like multiplicities.
Of the columns within the array the first gives the order
and muéﬂnﬁcities of the travsform of a plane section, and
the othezs the same data for the P-surfaces which correspond
rsspectn ely to directions about the F-points. The notation ¢, ;

ithin an array represents a square matrix with principal

diagonal elements 7 and other elements j. A precise definition
of the three types is

(6) T = Ayege; T8 = A28 (66) - Ayage (34);
T = A-w.u (56) . -’11253 (34) . A3456 (12)-

The symmetric {ype T° has the eiplic.ir, expression:

(7) T y6=—70+2L, }’;':——J/{*{-L (’&::1,-",6)‘
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Corresponding to the ways in which the groups of Fpoints
¢an be selected from Qg there is one type 7 (a collineation),
15 types T% 15 types 77, and one type T° The 6! per-
mutations of the #'s combiped with each of these types yields
ihe group gna of order 6! 52,

The surface of order y, and multiplicities 7; may sometimes
be represented more conveniently by the lnear polar of the { ™
valne system y with respect to the invariant quadratic fp{'m\’
¢ in (4% Thus the form o\

\
(8) oo — G i— -G T 4N

9 {.'
represents a surface of order ey and mu]tip]icitiﬁ.&;\q. In par-

ticnlar the invariance of L indicates that theweb of quadrics
on € passes into the web on the congfitghit set ¢F. Also
the 32 types of Cremnona webs noted\@hove are represented

by the forms: A\
T =2 2 wﬂ%r.ﬂﬁtﬁébﬁl%?’drﬁhﬁ’ c— 274,
{9) TS = J0yy — dyy ~2hye— 27— o+ — 2743
17 == WS- dn— - — 47

The P-surfaces of (J:,\g\ead off from the celums of the arrays (51,
are 32-in number_and are represented by

(10) P =l PR = 2r—ri—1— 1w

| s&aﬁ’kﬂmn)g =4y 2p—pi— e
Thes\e‘ffﬁivide into 16 pairs, each pair a quadrie on @,

N

R

/

P == P P jklmn);
Py = Prma == PR - PUmn),

e

which are permuted as entities under ge s.

The equations (7) show that 77, as a collineation on
the s, is a harmonic perspectivity with linear space L of
fived points and center at the pole of I as to . Itis then
an invariant element of goo which with the identity makes
Up an invariant subgroup A of ges The same equations (7}
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show that the quadrics on @} are transformed into those on
Q2 in such wise that each of the 16 quadrics {11) passes
into the like quadmc on Qﬁ From thisz it might be inferred
that the two sets QF, QF congruent under 7% are projective.
The same inference is .an immediate rvesnlt of the defining
property, noted in 15, of the cubic transformation A s
namely that if two ordered sets OF, QF are congruent undm‘
Aissq. they are projective uunder Ay, (56). For T isg Rx&
pressed in {6) as a produet of three elements of this Jatter
type. The sets Q5 QF,3 congruent wnder 777 ma ¥ then he
taken as superposed and 7' is then an inv o}utl\u 17 which
lecaves every quadric on Qi unaltered. AlSQ) the net ot
quadries on y is invariant whence 17 traqsfmms y into r;
where @4, v, 4/ are the eight base po: ks of a net. If iy
coineides with ¥ in some direction, y0hg quadric of the net
on y nust have a node at y; BGIIVElbel\ it a quadric has
a node at y, the E‘lf"hth b&% &Obnar{ of the net on Qh 7,
is at . Henee the 1{}cus of fixed pomts oflI is the Weddle
quartic surface, W (y), the Jacoblan of the web of quadrics
on @s, the locus of nades of quadncq of the web i.e. the
locus of points y &Iﬂ “which Qi projects into a set I on
a conic. From the\Clebseh transference prineiple the equation
of this locus is/' )

(12) Wi l_ ‘|130y1 | 425y | 145 ¥, 5:285y5 :

1136y] |426y| |146y| 236y |

\

The ‘equation (12) shows that W{3) contains the line ¢i¢s
"t(id by reason of symmetry all 15 lines §;4;. The tangent
{ane of W(y) at g; must vanish sinece it ean mot contain
the five lines g;g;. Hence W{y) has a node at g; with
tangent cone P (i*jklma)®.  Also, as a nodal loeus, W (3) must
contain the norm cubic C* on @ and the ten double lines
of the pairs of planes P(ij%)', P(Imn).

The involution, 4,eq, (56) = (56) 4,554, shares with I7 the
property that congruence of @}, QF under it 1mp11es pro-
jeetivity in the identical order. When Qs, Qr coinecide,
Aiss4 (68) is the cubic Cremona involution with superposed



56. TBE FIGURE, @3, OF SIX POINTS IN SPACE {9

Fpoiuts at gqi, ---, g, which interchanges ¢, and ¢, As
elements of gs» the 15 involutions of this type satisfy the
relations,

1053 (36) - Aoy (46) = Arog; (46) - Apyy (56) = Ayags (45),
(13} A2 (061 - Ayase (B4) = biags (34) - Ay254 (D)
= Tt dygse (12) = Ayags (12). 170

These are checked most readily by noting that any two equal®),
products have the same order and the same effect npon the °
gix Floel. PO

The 32 elements 1, 7, dgw (mn), I"dym {??m)’rfo.nstitute
according to (13) and (8) an abelian subgropp~of gs 5 for
whose elements eongruenee implies projectivityd” This sub-
group, fre, is therefore an invariant subgymﬁ)'}}f s5,5. When
the congruent sets are brought into cojngidence there results:
(4 The siz nodes (G of the Weddle @thface W(y) define an

abelivn Cromonn gronpg Jigs ém"‘sﬁmce which leaves Wiy)
unatlered.  On WY ‘-‘E}‘{a’dhwﬁm‘d‘ﬂf@fﬁggg is the identical
transfurmation and the paip® of elements, T? = Ay, (56)
and T* = J%. Ayysy BOY, has the same effect. The ve-
sildting hig on the goints of W(y) is isomorplic with the
yrewgy G (of. 32)\}}" additive ha{fpmwds (p == 2).

If indeed o 50y r56’i~1- identified with n' = w4 Fig ﬁhem Py
is a half permd‘ it the Dasis notation, the multiplicative
relations (H)\ﬁg isomorphic with the half period relations,
Pay = P AP, Pig+ Piy == P,

Thc ele,ments of the invariant snbgroup, fs, of gs s account
fm,g(u:h type of Cremona transformation. The factor group /g
“t\zfao with respect to g s Is therefore isomorphie with the

permutation group of yg, <. -, y5 or of the points g1, .-+, go-
This factor gronp can be mpresented as the Moore?’ cross-
vatio Cremona group, Gz, in Sy, With ordered 41, -+ -, gs

the first five points are taken at an ordered basis B
in S; and the sigth at » y. 1f the points are taken in per-
Inuted order m, say Bijs oo e Qi and it the first five are then
transformed hll(’dl"]} mto ordered B, the sixth is transformed
into the point %" == w(y). 'The 6! points 3 so obtained will
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each with B constitute a Qé3 which is projective in some
order 7 to (i = B,y. A simple algebraic apparatus for
the representation of this group is the codrdinate system
Yi, 00, Y5 Where

(15) ity = 0.
The bhase B then has points with codrdinates: N\
T C A I T O

If the parameters of Qi on C* are the ¢, -- -, eg"(')'i‘ 35 and
if this binary sextic be transformed linearly{i such wise
fhat e; beecomes oo and that the sum of the’ transforms of
e, -+, & 18 zero then these five transfom\ﬁxale the codrdinates
Y1y -+, ys 0f the point which with B{ferms a Qi associated
to P.; (cf. %), 'The Gopel invariantd{85 (2)) then yield Gopel
covariants of (,» which are quadr’ms on B, namely
wwrw.dbrag alibrary.or ?

(16) (12) (34) (56) = (9'1""?/2} — Y

The six irrational 1nYa.nants A, Fof rr yield irrational
covariants A (y), \\, F(y) of Ga 8 where

(a7 4@ f'\(?ﬁ Us)ar— )+ - - (ys—y) (g~ ya); elC-
The siiqli\d}ics Ay}, - -+, F(y) on B, subject to the relations
twfﬁw+ PG =0, Lt .. AP =0,

‘deﬁne the linear system of ot quadries on B. The linear
relation is therefore to be expected. An interpretation of

(19) ) - A+ +FHy) . Fly) = 0
is furnished by polarizing the cubic identity to get
Ay Aly, )+ -+ F ) -Fly, ) = 0.

This shows that for given y, the quadric (19) in variables ¥’
has a node at y. Hence (cf. 15 § 9),
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(20) The equation (19} for given y and variable y' is the quadric
come with node at y and on B; for given v’ and variable y
it is the Weddle quartic surface with nodes at the QR=B7.

We have thus identified the invariant %;, of the linear
group, ¢ss, as well as its factor group %s, with Cremona

groups in &;. There is however no Cremona group in S,

 which is simply isomorphic with gss because of the prc-

jectivity of congruent sets Gf. N

The behavior of curves under Ay leads to the dual ftsrm
of gs,a. A curve of arder ¢ with multiplicities # at i hecomes
under A;z3; a eurve of order ¢ with multiplicities ¢f at o where

o = o+ 2 My, & = citMioady LJ = g
(i==1,-,4; §=25,06; Masu ‘—'-fz:GQ\“—CL—-"—Ci)-
R
This substitution is the transposed ’substitution of the in-
volution 4,4, in {3}, and therefore its’ dual, with invariant forms

www.dbr au‘hbrat,y org in
(29) oy — oy G B — 26

(21)

The sitnation is expresded most simply by ebserving that
a curve of order ¢ 1@1 multiplicities ¢; is transformed under
regular Cremona ’gra%formation as the form

A

(Y CGYo—Cy1—+""C}s
,\" o ¥ 131

is transf ed under gs 3. The F-curves of the second kind
(et. °* p. 1\98) for the tramsformations T with F-points in 5
are, smteen in number and are represented by the forms:

E23) F=38pr—pyn— v Jfy=vo—ri— ¥

They are then respectively C* and the 15 Hnes g;¢;. They
are transformed among themselves by the elements of ges
with a change of sign if a particular curve is an F-curve
of the ecorresponding Cremdna transformation. For example
Ayess transforms fis into —fy., fis i0to fis, and fi into f.
The occurence of — 3, indicates that fis is an F-curve of
the second kind of 4;s4q.
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We shall have occasion in the next chapter to consider
the reduction in the order of the transform of a curve due
to incidence with these F-curves of the second kind.

37. Schottky’s parametric expression of the Weddle
quartic surface. An elegant parametric cxpression of 1 (y)
in terms of theta functions of genus two has been given by
Schottky®. We reproduce this in part. The eight thegs
produets of second order and like characteristic {Fs A the
basis notation) are (cf. 30(3)): O

(1) Sisa (1), o (1) Fone (), Fs(u) Fuzen), 19‘4(?” 56 (24);
Bhas () Fass (), Fryp(10) Puas (), P15 (a0 3255&“}:\ Ty () 95 (1)

of which the first four are odd, the last fowr even. In either
set of four any three are linearly rel*(ea‘ (cf. 30 (8)). Henee
the 20 odd functions, A/
(1) Fie = 93(0) &) Frw) Fipeu),
are such that, in aﬁj”"é@t?‘?ffl%‘ﬁ?“'ﬁﬁﬁg'm

Fe, .F%ﬁ,- Foper Fise,

. o\
any three are lin z%iy’related. Thus all 20 can be expressed
linearly in terms of the four,

¥ 3 5 -
A\ ¥ Fmss Fssm I‘aw: Fa:.s;

moreover Jach Fi; which contains a subseript 6 can be
expte\iéed linearly in terms of Fygy, Fise. Fagg. Ouly four of
theybwenty are linearly independent and these four may be
m:'g'tjl.‘lat-ed to independent linear functions of y = wy, -+ -, ¥s.
S\ Each F is then equated to a plane in S5 (y). Since the planes
Flisg, Fisg, Fyag mect in a point, say gs. each F with sub-
script 6 is a plane on ¢,. Thus from the symmetry of (1)
there ¢xists a set Qg in S5 sueh that Fix is equated to the
plane on ¢i, g5, gx. If four independent equations of this
kind are solved for the co¢rdinates y in terms of the four
e then for variable - wu the point # runs over a surface.

An eguation of this surface is

FlSz': Fuzs Fl-iﬁ F!ss - Fws Fus Fum Fﬂss = 0.
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This is identically satisfied by (1) due to Pyr(e) = Fon (1),
Since Fyx 13 a constant times the determinant [45%y' of the
codrdinates of the four points 4. qj, g, ¥, this equation may
be written

1 185y! [425y] 1

2 . ’ .
2) — ¢ 136y! [426y| 145y i235y] = 0.
It may also have the alternative form R O
135y {425y| 126y| | 436y

— 1136y 426y 125y [435y| =00

On subtracting these two and using the }\“e.ntltj
146y 1236y | — | 126y |43by| 1136y| 1246y,
there results, after factoring outy 1136? 246!,
wiww.dbr atﬂ.tbral y.org.in
| 185y |425y| = -—cll?iﬁ@ L28by |+ ¢ 1125 y| 430yl

whence ¢ = ¢ = lsnghus the surface (2) iz the Weddle
surface W(y) (cf. '3@{1"2))

Schottky goeg on to show that the theta squares are
proportional g¢ tma,dratic functions of the F's. Tn the second
set of four “functions above ¥y (w) & () is Hnear in a5 (u)
Pags (0 k\”and 1}145 (1) Fogs (). Multiplying all three by
Wy (u) 94 (u) 93 (x) and setting

\T%}"' Gy () S0 Golw) = 1
the linear relation becomes

I7 53(“) = aFygs Fous -+ U Fius Fiss.

On the right there is a quadric with node at g, and simple
points at gy, ..., gs. Due to the symmetry on the left this
quadric must pass through g alse. If then we set

(4) 95 = Gs,



124 1I1. FUNCTIONS OF GENUS TWO

G, is the quadric come P(5*12346)%- P(5)° (36 (11)). Again
if we set

(5) (Fieg = Gue = Fros Fuge
then i
(8) 7. S () = Gy

where (.3 is the pair of planes P(123)'. P(456)'. In (4)
and (6) the theta squares are expressed as quadrics on the
nndes Q{‘, of W(y). But the theta squares are th{:ms}'l\ees
linear in the cotrdinates Z(u) of a point on the" Khmmer
surface (32). Hence K is the map of the W e(ld]e surface
by the web of quadrics on its nodes Qs ~"‘

In thig rational transformation from spade S;, (1) to space
SS (Z) in which planes in 8&(Z) correspdnd to quadrics on
Q5 in 8, (z), the net of planes on Z corresponds to a net
of quadrics on Qi which containg O and a farther pair of
the invelution 77, The mnqt‘grmmtmn 13 then 2 to 1 in
general but becomes’ blmtmna on W {) qu, K(Z) since on W(y)
the members of a pair, oFI7 coalesce. If in the quartic
eguation K{Z)=0 tha\cofjrdmates Z are replaced by their
values as quadries ({\Qs, the square of W(y) must be obtained..
Hence
() The sqet.a.?'g~\of ke gacobian, W(y), of a web of quadrics

on six/gioihis is a quartic polynomial in fowr quadrics
af ae"‘rxfeb This quartic polymominl is the equation of
o Kummer surfoce bzmtwnally equivalent to W(y).

fl‘he'f enrve, (_73 of €% is on a net of quadrics of the weh.

”I§ ~corresp0nds therefore to a point on K. Since the cones
\Gl, -+ (g in (4) all contain ¥, and the corresponding theta-
squares all vanish for » = 0, this fcurve is determined on
Wiy by u =0 and corresponds te the node % =0 on K.
Similarly the 16 f-curves giq; on W(y) correspond to the
15 nodes v = Py on XK. 1t is clear also from (6) that the
conics in the even tropes of K correspond .on W(y) to the
double lines of the pairs of planes on ¢} and again from (4)

that the conics in the odd tropes correspond to the directions
on W{y) at the nodes,
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38. Cremona theory of the hyperelliptic curve A} pre
The hyperelliptic plane curve, HF™%, of order p-+2 and
genus p with p-fold point at 0(0, 0, 1) and equation

)] HY? = fpad+ 2/ T2+ fps = O,

has 3p-—1 absolute projective constants, Indeed the (p—]—?l
> (p+5)/2 constants in the general (p - 2)-ic are reduesd
by the p(p41)/2 conditions for the p-fold point at) 0 and
the six constanfs in a eollineation ¢ which ]eaves O fixed.
The forms f, fpi1, Jore contain 3p-4-6 coefﬁc}entb one of
which is a factor of proportionality and six\of which may
be removed by €. The curve HY AT birqtiphdl]y equivalent to
2\

@ & = 0 = £ =S 2y 1y = i),

whose moduli are the’ ‘?jadbrﬁﬂiﬁ@@ﬁ&bﬁt%msq«rahoq of the

binary (2p+2)-ic. Henece ~3%

(3) There are ooF curvegd H?H_ all of which are projectively
distinet but bir atwna}lj equcealent.

Before proving t}@t these projectively distinet fypes are
equivalent under' Oremona transformation we consider the
Cremona trangffrmations 7 under which .Hp“ ig invariant.
The carve, @'fﬁ a unique g¢? ¢ut out by lines £ on O and the
co1nc1den\\&eb of g7 oceur at the 2p-1- 2 branch points 5,7y, 1,
on Hp\ dt which the brawnch lines, or tangents to Hg, h"om O,
touch.' If H, is invariant under T, the ¢? is also invariant,
‘a\nﬁ“therefore the 2p-+2 branch lines also. For p == 2 the
branch lines are in general self projective in their pencil
only in the identical order whenee T' leaves every line 2 on O
unaltered. Then 7 effects on a particular line ¢ a projectivity 7
which either (a) interchanges the two points of H, on T’ or
(b} leaves each of the two points of H, unaltered. In case (a)
7 is involutorial with two distinet fixed points whose locus
for variable f is a eurve H, with equation,

(4) Hg+2 —_ 9' J-’o+2gq+1 x‘)+gq-1— = 0'
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Sinee the pairs cut out on ¢ by Hy,, A, are harmonic,
6)) fp Gqr2— 2.)‘;;.;.1 Efg+1+j;n+2 g, = 0.

As thns defined by Hy, T = IH,is invelutorial. The branch
points of H, are fixed points of 7 H, and therefore are on H,;
from the symmetry of (5) the branch points of H, are on HyN
The 2¢ -+ 2 branch points of H, are the simple F-points of IH&.
whose P-curves arc the lines £ on them. The point (X kN
F-point of order g4 1 of IH, whose F-curve, ™

(6) Ly, = gyt ge11 = 0, A

iz of order ¢-+1 with g-fold peint at O a.ri'it\simplc points
at the 2¢-+2 branch points. Transfom{a.t-ions of this type
were discovered by de Jonquiéres (cf AN 81 %9 p,98), The
2p+2+42¢-+2 intersections of Hp and H, outqlde (} are

determined from the eliminant of 1) and (4) with respect

{0 Z:, namely www.dblaulj.lgr'aly-org in

4(.)(33 fp+?-_.f§+l) (gq 904_;,—'.??_,_1)

_[j gg—,-g 2.)‘;-;. 1 gq+1+.f;g+2 .'f)rg‘)‘: - 0'.

Hence e \!

(1) The two cm*veS}\\Hp (1) and H; (4), with common multiple
point O, ard dach on the branch points of the other 1f (D)
is satisfel/ Then each curve is invariant wnder the
quuz'&‘e& {nvolution for which the other is the locus of
Sided pom.ﬂs The involutions I H, and I H, are permutable

} Jorm with the identity and thetr product, T Hpygit
N wzﬁi Sixed ewrve (B), a four group.

< ) The equation of Hy 41, the loens of the common harmonie
pair of (1) and (4) is

Sy s e
(8) HIH'-Q‘-H- = ‘ ¥y gr}1—1 gq+2 == {,
1 —z,

For special relative valnes of the coefficients of the binary
forms f, g in a, 2, linear factors in x,, 2, may separate out

and the order of the product 7H,is41 be correspondingly
reduced.
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Tor given H, the eurves H; which satisfy (5) lie in a linear
system and eut out on Hy 2 g;7t3 . The existence of this
system for g = (p—2)/2 furnishes conditions on O and the

2p—+-2 br an{,h points ». This set, K315 which in general
has 4 p—2 absolute projective constants, has in the present
case only the 3p-—1 inherent in Hj; and therefore is suhject {
t¢ p——1 conditions. If p is odd (p ==2%k41) there, 1:,
a pencil of eurves Hy with A-fold point O and simple pom{s %)
Of these simple base points % are determined by the, gthers
and the 2%k = p—1 conditions thus obtained. If. however P
is even {(p = 2k-}-2) there iz a unique eurve Hpand a net
Hioy on Bipys It O and 83k+5 of the pomts r are given,
the web of curves Hiir onm O and these” points {which
contains a pencit made up of H; andian arbitrary line 7)
cuts Ay in a _g"f'ﬂ. If then a furthep’point + is given on
Hy the % remaining points » are) determined as the inter-
sections of Hy with H‘Wfﬁwuﬁkﬁlﬁf”i&eﬂweb on . Thus
the set ig subject to 2+ 1 =% p—l conditions. Hence (cf .
(9) The p—1 conditionslen the planar set of pomts Ripis
consisting of the ‘2,}‘3\%2 branch points vy, -+, 42 of
HE™ and of rophe=— 0 are: whenp = 2k+ 1, that there
be a pencil of carves Hy on Ripts with Iefold point at O;
wid whenpe= 2k4-2 that an Hp and an Hyyy mth
mitltiple }}mnt at O meet in Ripts.

Thert;\Qre special hyperelliptic curves Hjp for which curves
H, (4 ERS p—2)/2) satisfying (5) will exist. TFor example
H}, 31 in (8) is such a special eurve if ¢ p» when p+g
\k Jeven,

Returning to the case (b) above in which Hj is the locus
of fixed points of 7, the cffect of 7' upon ¢ is determined
when the correspondent of O on { is located. The locus of
these correspondents for variable ¢ is a rational curve of
type L, in {8) and T is a Jonquitres transformation of order
g-+2. Since the g directions at O are self corresponding
they must coincide with those of H), at O and L, has the form

(10} Ly = o 9u—prtgern = O
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The 2 ¢+ 2 simple F-points of 7' are the intersections of L,
and Hp outside the gp--p absorbed at @. For particular
choices of Ly, T is periodic; e. g. if L, = fj ay+ fpo1 = 0,
T is the involution J H,. Hence
(11) The infinite discontinuous group of Jonquicres trans-
Jormations which leaves Hp wnaltered hus an invariand™
abelign subgroup of index two each element of whichuday
Hy as a curve of fixed poinis and is de:ter;nz'-raepi\'ﬁy.\ a
ewrve Ly in (10).  The remaining elements alk ‘wre in-
volutorial of type I Hy in (7). RO
Let Hy and Hy be two projectively distinet{ durves which
are equivalent under a birational transformation’ 5. Since B’
followed by a properly chosen collineatzi@,wﬂl superpose
and O as well as the two sets of 2 p 42 branch lines, this
sitnation will be assumed. Then BlMransforms a point of
Hp on a Hne ¢ into a point of‘]EQ} on this same line. TLet
@y, vy p be the peintadhrddybiwickrpans into the p-ad of
points on Hj at O. Thropgh the points « pass a curve L,
of sufficiently high ordery, to meet A, outside O in Qg2
turther points 8. Let\\the line ¢ cut H, in y,, 7s; Hy in
71, vi; and L, in 6\\ On ¢ there is a projectivity which sends
71 7e 0 into 7is, O. For variable ¢ these projectivities
define a Jonquiérés transformation J; of the plane, which is
of order gAx®" since L, passes into directions at 0. The
projecti@}”becomes Hlusory ouly for lines ¢ on the 24-+2
points(8" These points and & are the F-points of Jy.  Any
other choice of rational enrve Lyoon e, « -, @, would lead
\”t§»~zi. Jy such that J; . Jo~ " would leave H, invariant point
By peint. Thus J} is the product of J; and an element of
the mvariant subgroup of (10). Hence
(12) Two curves, Hy and H), which are birationally equivalent
are equivalent under Jongquicres transformation of the plane.
The >oF projectively distinet curves H} which are biratio-
nally equivalent to H, are determined by the w? p-ads
1y ey ity o Hp.
Two points which are paired in g7 will be called “super-
posed points”; and the superposed points of a k-ad of points
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will form the “superposed %-ad.” Since under IH, in (7)
the p-ad at ¢ and its superposed p-ad on H, are inter-
changed, any two superposed p-ads on H, determine the
same projective type Hy.

Theplanarset K, made up of the branch points T2,e ey Topta
of Hy and of O is projectively a special set sub]ect to thel
p —1 econditions implied by its situation with respect to H,.
Tt iz therefore natwral to develop the theory of setglcons
ornent to it under Cremona transformation with parttculal
reference to those transformations which leave the form of
these couditions unaltered, i.e. which convert &y into Hj.
These are the Jonguitres transformations senerated by Aow

and permutations of 71, -+« +, rapes. Witlg.gu;perposed sets the
elements L
(13} T 7= Ao (12) == EI,«J) Ao

are involutorial and warguﬁbmwwm

(14-.\ L his o g dis R -Ei“&.‘

Tw £y = 1y Iww% T By = «++ =7 Aipae, ele.
+$ ) )
Inecluding the idenb'\t‘\:"the
?p—r Z)J—l—i:‘ i 22""9) e D2
., )‘+{ }l (Qp—l—? =2

eiemeut\ll v constitute an abelian gyu+.. The clement

SN 33,\,: is IH{., mnder which the set qu?,.rJ is congruent

10 E%‘lf Hence

\(T*’)) [nder Jonepricres transformation the planar sel Ry
defined by Hp is congruent to 2°0 pr o;ectzbei’y tlistinet
sefs. The tiwo sets congruent to Ripy under Tis.. o and
..;_(2;‘_:.. 1,--0, gpte GEFE PT (ye:‘?f%{,.

Under such transformation the F-curves of the set, i.e.
the curves which correspornd to directions about the points,
divide into two conjugate sets. The first set contains 2°77
members; one, the directions at 0, and the others, the curves
of type Ly(ri, -, roxr2) k=1,.++, p). The 221 divide
into the 227 pairs, LL (1, +0-, Tk Le) 'md Lyt (Painy ooy Popre).

9
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(18) Each curve of the pair Ly, Ly_p_1 mecte H, i the same
prad of poinis outside };’.Ep4.;;. The 2% peads Hws defined
on H, represent as in (12) the 2% projectively distinet
curves Hy whose sets Rfﬁ;-:-s are congrient to .Ii’.g}.pr.g wnder
Jonguicres transformation.

Yor, Li, Ly—r—1 are interchanged by 7 H, and the intersections
of either with H, outside R, .5 are on both, A partienlar pair)
L_4, Ly, 15 the directions at O and the uniyue curve {;‘ 2,

The second conjugate set of Frcurves divide into 2 -3 Bpairs
each pair consisting of (a) directions at »; and (b) thé Tue iy,

The arithmetic group, jsp4s,:, attached to thegedonquicres
transformations has the order (2p+42)! 2%®) The group
has the invariant involutorial element defined by / H,;. The
group alse has the invariant abelian Suhgé"'ﬂllp .20+ mENtionEd
above. The factor group of order f2p~-2)! appears as the
permutation group of the (:nnjug‘a{e“ set of 2p—+ 2 pairs of
Freurves in which Aewveffieetslitierfrargposition (12),

The diseriminant conditipli’é"of the set Ry also divide
into iwo conjugate setg nnder Jonquigres transformation.
Tn the first conjugate, aét there are (2p+4-2) (2p+1)/2 pairs
05 =0, 0(Orir)* Q\O 1ndlcatmg respectively that »g, 4
coalesce, and thaw, U, r;, v; are on a line. Tn either case
H, acquires d\nt}de at #; = v; and the genus p i3 reduced.
These arey "Qf course, the diseriminant conditions of the
binary Qp+2) ic in (2).

Th&‘\econd conjugate set arises from the condition that
r; QOLHCldeS with O, i. e. that one branch of H, at O has

\a ﬂexpomt at @. The conjugates of this are of the form

{O%r1, o, #1971 =0 (k= 0,..., p—1) which represents
the conditien that there exists a curve L; on 2%--3 rather
than 2k42 of the branch points.

(17) The set Ripis has under Jonguisres transformation a con-
Jugate set of 221 discriminant conditions which divide
into 2% pairs

O(Frs, oo -, vapya)it?
(0P =2 ygpig, -+ o, rogag)P 1
either of which implies the other.

0,
0,

[
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Tn fact under 7H, the one condition passes into the other,
The extreme case d{0F 1y, ... rypi)? = O pairs with the
coincidence of rypq2 and 0.

39. Transcendental theory of HF™. Application
to the Weddle surface (p—92). The points = of H5'™
are in one-to-one correspondence with the points ¢, ¢ of the {
Riemann surface & defined by 38 (2), To the branch pmnt§
vg, -+, #ap12 of Hy there correspond the branch pdints
1, eap1p 0f F; and to the p-ad of points of H? which
mdlesce at O there corresponds p distinct points, 0N FoIt
is convenient to denote the point ¢, ¢ on K by St corres-
ponding point « on Hy.

Let p points a1, .- -, zp be selected ond\as well as a path
of integration to each from the ﬁxcd‘branch point r. If
¢ is ome of the p norma] mtegm}s of the first kind and
we set
(1) oy, Ari“:;%fkfﬁs‘}t‘-%b#'ffe;%-%& (=1,
then for given n = ul,\ . up there is determined in general
a unique p-ad, zy, - - ¢ %), the solution of the inversion problem
(cf. 34), on F or 011\ he curve H,. The superposed p-ad is
determined by ~>e since in each term of (1) the integrands
and limits c‘hdnge gign on. F with z.

The theerem of Abel (34) states that if a1, -, Tpro are
the pou&s of intersection of a liné with J, then

(,%J IU+ p_r??}g = m; (25 1.' rp)
\ )

where the m; are constant for a variable line section. If
the line section is on ¢ then 4:1,- , Xy 18 thep -ad at O

and the other two points are in q Whence ”+‘v +, ?+2v -----

Hence

(8) If in (1) ws = my when 1, -, p are at O on Hp then
the p 12 infersections of any Zme with Hp are subject to
the relations (2). Also the v = (n— k) p - 2n intersections
with Hy outside of O, x1, -+, Tv, of any curve of order n
with ke-fold point at O are subject o the p relations

ge
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(4) f:?ig+ e + :-:’vf = (nmk)mi [3 - 1: Tt f"]

If b =n—1 these are jusi sufficient to defermine as in
(1) the remarining p intersections when 2n are given fo
determing the curve,

It is proved by Krazer {* p.448) that the values of thes
integrals :z =29 -+, 2p+2} are congruent to certam
half penodq which, bemg mutually azygetic and mb]ec‘b to
no other relation than that their sum is congruents te’ zero,
may be denoted by Py in the basis notation. THis transter
to the basis notation is, more precisely, the f&llm\mg.

®) (31 LI Gp) . {st Posys Posaser - l 2,00ey 211 )
’ f - .
€1 52'-'6;2 B Psg  Bis '\ P’p -1, 3p+2

If 2, -+ -, %, are the points of Hpden a line through two
points 7¢, #; then from (1) and (4)\this p-ad is determined by

www.dbr aulj,bra .org.in
(6) T == m F‘y

And in general N
(7} The p-ad of pomts\cut out-on Hp by the pair of ciwrves
Ly, L1 of ¢ 3@(16) is determined as in (1) by

[ _—"7’??1+P1,---,2;.—.+2 = m+ Purs, a2

The 22'{’,\@%5}3(:&15833,; distinct types Hy with sels Réﬁ;__'g Con-
gruentto R%p-}-g under Jonquidres transformation have p-ads
at(lis which  arise from the p-ad at O on Hy by the
Bperations of the group of additive half periods.
o Phe following construction for the p-ad superposed to that
\at £ on Hy, s a consequence of Abel's theorem.
(8) The Linenr system of cuwrves Hy—s on vi, «--. Yappe Culs
Hy i a g0 The unigue curve L, on a set of gt
cuts Hp in the p-ad superposed to the p-ad at O,

For, Abel's sum formed for the 2p -2 points #; is
P4 Ppo+4 oo+ Prgppe == 0. Henue according to (3) a set
@y, e wapy of 2257 is defined by PR x”’“’p = 2m.
Also the additional p-ad % on Ly is defined by 2m—|—aa
Or il == — M.
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It H, is birationally given, projective properties of it which
are not also invariant under birational transformation are
expressed by conditions on the parameters s of the point O,
If for example m itself is a half period and congrnent to
—m, the p-ad at O coincides with its superposed p-ad and
H, has a flex on each branch at 0. In this case the
condition is direetly on the parameters m. We proceed to
find others expressed by the vanishing of theta functions of A

[et the branch peint », move up to ¢ to produce # féx
at 0. The remaining p-—1 points @y, ..., 2p at ()za;i.‘e 3til]
arbitrary and 7'+ - - - + 7 = m. Then (4 p.456FT; 5= 1)
$(m—+K) — 0 where (*'p. 451 B1) & = (; (’)i 3’::: 1) with
5=0, 1 according as p is even or oﬁi;l,\\'By ¢omparison
with (8), & = Pyr....2p11 (p even); kz 1457 2p 41 (p odd)
There is still a choice for the desighation of the eriginal

even theta function 3&@,\\9&0%&&@?{&@%
@ $10, OF (1) =\bwwr...,zp41 (0).

Then & (m-+4) = 0 wheD\in the basis notation %, (m) == 0

{p even), or I (m) = B/(p odd), Hence

(10) If the basis m;}t\im is introduced as in (D) and (9), the
condition g(&':ﬂee parameters m of O on Hp that 1
coincide pith O is 9y (m) = 0 or ${(m) == 0 according as
p isceben’ or odd.

This.’(‘,%"ition is one of the conjugate set of discriminant
conditipns deseribed in 38 (17). The conjugates are obtained
by\earrying out the parallel transformations, Iy (38 (13},
and = m+ Py (ct. (8)). The result is
(13) The conjugate set of 2% discriminant conditions 38 (17)

is given by the vanishing of the 2% odd and even thetas
Jor the parameters m of the p-ad O on Hy; more precisely,
if p is even, 8 (OFrirs oy Pt = 0 when Yy (m) = 05
o pis odd S{(Friwmrym - =0 if ... (m) = 0,
while & (OF »; ¥ e Yl =0 if Y. {m) == 0.

When p — 2 the set Ri of six branch points 71, --+ 7%
and node O — r, of Hf is subject to the single condition
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(38 (9)) that »y, .--, rs are on a conic XK. Under I H3, K is
projected into itself from O and therefore meets H; at the
pair of contacts of tangents to K from O. The line joining
these contacts meets Ha aguin in the duad smperposed to the
node (cf. (8)).
' The planar set B> determines projectively its associated
set Q7 in space. On the norm cubic carve C* through
¢, -+, ¢s these six points have parameters. projective, 0,
those of the six lines from »7 to s, ---, 75 (cf. 16¢). Heqied
for all sets R defined by curves Hi' birationally eg{ﬁyélent
to Hi the points g;, ---, gs may be fixed on €3, I, .-, g
are projected from g, inte a planar set Qﬁ“‘?tﬁis set is
associated to ry, ---, g {16b).  Since »r \\¥-, s are on
a conie, (¢ is likewise on a conic (16¢). Hénte g; is a point y
on the Weddle surface Wi(y) with modes at g1, -, 4o
Thus the 0® projectively distinet (ctrves H3' which are
birationally equivalent and ﬂ&‘f- gfore determine the same
Gu, vy g5 ATe represcited by ﬁ% agydggg-ﬁgints y on W {y).
It, in RBY, ry, 7y are on aline, i. e. G (m) = 0 {cf. (11)),
then, in @7, ¢, ¢ms gn, y @re on a plane (16 (9)); if » and
(0 = r; coincide, i e -é&,:(m) == {, then ¢; and y = ¢; coincide.
Hence (cf. 37 (4), (6})\t.he parameters » == m of the nodal
- pair on Hi are the parameters u in Schottky’s parametric
equation of W:@). The 2% = 16 sets Ri’ congruent to i
under Jogqaé%res transformation (cf. 38 (15)) determine on
Wiy }Qp‘eints y which form a conjugate set under the half
pericg@?group, W = u+ Py {{9), 36(4)). Indeed the association
o:f\;@é and Q5. is nnaltered when the transformations (12) Aps
‘and (12) dssse are apolied to these respective sets (16 (R)).
If four points #, ..., #, are on a line, r;, #; are flex
points af the node and w ==m == P,; y is then on the line
g5 95. If w==m = 0 the nodal pair is a pair of 4. This
is the indeterminate case of the inversion problem and can
occur only when Hs is a doubly covered conie whose double
points are the sets of ¢i. Then R? is on a conic with O at
any point of the conic; the associated @} is on €° with y at
any point of O3
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The proportionality of the determinants |ij%| and [muy|
(y = ¢:) was noted above. It persists for |ijz| (zx =0)
and klmn . For, if |kimn vanishes, then {ij) for the
sextic (af)® also vanishes (cf, 36 (2)); similarly if »,, #;, O are on
a line, two branch points coalesce to form an additional node
and (¢7) for the sextic of braneh lines vanishes. These
proportionalities are used in 42 for the interpretation of the
theta velations. An cxtension of this application to tie),
Weddle surface to values p>>2 has been indicated by the’
anthor *, N\

40. The figure, s, of six points in a plane. f'bcéasion
frequently arises to make use of the set Ri, usu&ﬁy as part
of a larger set, and some of its properties will*be developed
here. The determinants formed from the gdordinates of three
of the poiuts #, or of two points r and\a variable point s,
are denated by 147k or:7jx respeetively (i, j, k= 1,..-, 6).
The invariants of the wl\);%}ra'}‘\;_ 8 1_:;}’31_ (cf. 35) are cxpressed
o simply i terms of bt (A RATARED that a natural
point of departure for R; is“the system of Gopel covariants

.

.y ,i.(;ﬁ:;}:‘{\]kﬂxl lmnz|.
Gk

According to the{Blebseh principle of transference these

satisfy the sante“relations as the corresponding bisary in-

variants. Iﬁ\'ﬁhé'n a set of six covariants a, ---, f is defined

as in 35,@)»;'

@) @ 122|132 1462
AN

ﬁ;‘;ﬁ "conjuga.t-cs derived from the parallel substitutions 35(4),
there follows

(3) a+b=4]bler 122 |36z,

and furthermore

@ adbd...ff=20, 0+ FFF 0.

oo {822 B4l | 1621,

The ratios of @, ..., f subject to (4) define projectively the
peneil of lines from = te Ri.
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The ecovariants (1), and therefore a,---, f as well, are
eubic curves on Ki. Only four of these are linearly inde-
pendent and there must be a second linear relation counecting
@, -~ f. By proper combination with the first, the second
may be taken to be

®) dathbt .. Fff=0, atbdbf=0 Q

These values @, .-, / must be linear invariants of l{ﬁ:\:E{)r
if E; is given there can be oniy oo® line peneils fréu vari-
able & to Rs. Hence (3) must express the ccmgkti’(:fy on the
invariants «,---, f of this pencil that it mzly\'aé‘xist. If an
the other hand values a,.-., f are givepland five points
i, -+ 75 of Ra also are given, x is_umifuely determined
and r; must lie on the sixth line o’f"\fh} pencil, Asg Hnear
invariants, a, ..., f must be expresfible in terms of the ten
linear invariants

{(6) wWw w&b%gﬂ%}?ﬁ“ﬁ& .org.in

The explicit form Uf,,theéb expressions and sgme of their
algebraic consequence§ Mmay be stated as follows (" 1§ 4):
(T)If|éj,kl,ﬂzn€;§:ﬁiklﬁLjn1n|—~ﬁéﬂzn:ijl;ésthade&r—

minant of the (oordinates of the three lines |ijzi, kiz|,
Imn| o~
6= |15, 24, 36{4-(14, 35, 26| -1 112, 43, 56!
\O~ 1|28, 45, 16|+ | 13, 52, 461.

Lo\Bnder parallel odd swbstitution, 35(4), @, ---, f do wot

\"\3 “ change sign.  Further typical relations are
@—b = |15, 24, 86,

# Ry
(#) d+e+f = —|123]|456;.

’]?he condition that Bf be on a conic is an alternating in-
variant whose sign is fixed by setting

\[341]|561] 531|461

9) * 7 lisa2! 5621|5321 4621 )"
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The complete system of invariants of RBi is as follows

(ef. 17T § 5):

(10) Lf aa, -+, ag ave the clementary symmelric functions of
@y -y f, @ complete system of rational projective invariants
of 12 consists of @y, g, @, 5, a5 and dy V'd where
ds = s — 4o and V_—_ Mg —1).

The linear system of o cubic eurves on B maps the plama
upon a cubic surface M5 in S5 If the system is giver by
...« f the equation of M3 appears in Cremona’s hexahﬁedral
form (4), the sum of six cubes. The 45 trltangant “planes
of M3, as planar cubics, comprise 15 of the t},mn—[—d ==
ané 15 pairs whose equations are

L T e DY —
(L) (ad = f{g+2{12+2&d—{—2d2]

This pair can be factored %:%ﬁrﬁ?“dﬁ@ﬂﬁ of which is
(12) GeF d) (b +e) —= ({f+ de) 6+ S} =

The three ways are eqni'valent due to the relation
A\
(13) — = becf+efad+adbe.
A

There are\]’? sets RF congruent to R under Cremona
tr amformgtlon In fact the only types of transformation with
six or fe'\}eI Fipoints in K} are the collineation, 4z, Asss A1ss
Ay Am, and A0y Asge A1ag 0f orders 1, 2,3, 4,5 I'eqpectiwely
\101 numbering, aceording te the rhmce of the Fpoints in
1,720, 30, 20, 1 respectively. The F-curves of the sef aJe
27 in number; the 6 sets of directions at points r;, the 15
lnes #; r;, and the & conics on #;, 75, 7x, 71, *¥m. 'Lhese 27
curves map into the 27 lines on M. For given 1% the
dircetions at the points v; map into a line-six on Mf, ie,
six skew lines. For each of the 72 congruent sets there is
ou /i such a line-six and a pair of sets comgruent under
the quintic transformation (two associated six-points) deter-
mine a pair of line-sixes which make up a double six on M.
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An analysis of the projective conditions implied by eongrnenee
is given in (*'11 § 2).

The arithmetic group gs 2 (ef. 7)., determined by the per-
mutations of y,,-- -, 74 and the 72 types of congruence noted
above, hus the order 6!72 and is isomorphic with the per-
mntation group of the 27 lines on ME (T § 3). Tt has aw
invariant subgroup of index two consisting of lenvnts 0f
determinant -+ 1. The Cremona group G in Space \3),
isomorphie to g, is discussed in (*"11I) as an e%cntml
element in the determination of the 27 lines on, lfg

The eomplete prajective system of R given lig\(l(] I8 open
to the objection that onc of the Invariants, 3 l/ ¢ has factors
which have different projective meanings. Koy, d, == 0 implies
that B; is on & conie, and V'd == 0 j;ﬂi\ﬁihes that R is made
up of two perspective ftriangles. Jlhis situation iz due to
the choice of the group under \}hi}:h jnvariance iz requived.
If the group is redyced. dmrat&uehfﬁf@mg;mw Hoii2, A complete

system consists of s, . ,&.,,, W oand Vd: if it is enldrged
0 a g by allowing the passage to the associated set R§
of R, the system cops}stq merely of . -« .

Of greater intergst, Nowever is the cmn])lete system of A
under congruentdsansformation. This is the complete system
of the cubicslifface Ms. Its members can be built np out
of the 36 Aiscriminant conditions of the set K. For they
are likewise proiective invariants and as such expressible in
termv&f the |¢j %| which are diseriminant conditions. The
363 conchtwns comprise 15 of type d; = 0 which implies
"B "comcldence of r;, #j; 20 of type d;x = O which implics
that #;, r;, v are collinear; and 6 = 4, = 0 which implies
that Ei is on a conic. Kach condition is associated with
a double-six and, when satisfied, requires that M have 2 node
and that the two line-sixes of the double-six coalesce into the
six lines of M on the node.

A coincidence of two points is not to be vegavded as the
identity of the two (two conditions) but rather as the co-
alescence of the two in some direction (only one condition
because the direction has one degree of freedom). Thus
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a eoincidence is peculiar in that it can not be expressed by
a singlé condition on the codrdinates of Bi. Other dis-
criminant conditions when expressed in the codrdinates of Bi
are satisfied when certain coincidences pceur; thus (ijk; =10
is satisfied by ¢y =0, dgp == 0, d3z=0; and d, = 0 ix
satisfled by d; == 0. The proper procedure is illustrated by
the two types of irrational invariants of Ri:

N

AN

(14) 123! 1456, [134|[284}1356] 456(|512] {612{\.\
Each is of degree three in each point and thgj{é&tim A s
therefore an absolute projective invariant. JHaeh vanishes
at least once for any coincidence. DBut the'first vanishes
fwice for the coincidences &, 6,4, 623,“@;5, Oy, 0y and the
second vanishes twice for the coinciden‘ceq Oy0, 054, 0e. The
ratio 4 has then simple zeros whemvany one of the nine
discriminant crsndltion&\\r@mbﬁmhﬁm; {}mrgsm 56, 0, 1n5, i
vanishes; and simple poles when any one of the nine, dy,
O3y, 55, 0134, Osgs, Osse, 5456, dm, 0q12 vanishes. The 10 in-
variants of the first type\(lzl) and the 30 invariants of the
second type (14} are cqngugate members in the qlmpleqt linear
system of dimensigm 10 of irrational invariants of E; unger
Cremona transfogmation (cf. " JII §3). The 40 conjugate
irrational invavidnts are permuted under Cremona trans-
formatio jﬁ%ﬁ’ as the corresponding 40 products of nine dis-
cmmmmf\condltmm under the permutation group of the lines.
We. Seturn to the case when & is on a conic K {ds = 0},
Qidi-:x temary projective invariant theory of RS can then be

ticed to a binary theory. For with

(]5) xﬂ fr— ig’ ‘T"l L= f? x;, o= ].

as a parametric equation of K, and with # = ¢, ---, ¢ as
the parameiers of 12 on K the ternary determinants are

expressed in terms of the binary determinants, (ij)=ei—e. by

(16) [ k! == (i) (k) (j k).

Q"
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In this particular case there is an inferesting econncction
between the linear invariants @, ---, f of Ri and the lnear
invariants 4, --., F' of the parameters Pi (e , vy o) Also
when x is on K

{17) A B o F=a:b:. .. f

since |ijx| ikif.ac! |mn x| = (ij) (k) (-mn) (i) (56 . ffnwt}\
For given P, the value system A, Fbubject to 35 (.J)
determines a point 4 on a cubic sprea.d M in Sy “$he oo’
points of M; representing the «® projectively dl{tmch binary
sextics. If fwo roots of the sextic coincld® _ray e = ¢,
the point A covers the plane my whose\ equations are
A4+D = B+F = C+E =0 (35 (6} If three roots
€s, €5, 65, OF the complementary threo,)és, ey, coincide, the
point 4 is fixed at 1,1, ¥, —1, —1, “2 1 which evidently is
a node, 5 = Hega, de)@bmm@& org.in
(18) The Gopel invarianis 35(2) map the system af % pro-
Jectively distinet mery Sextics upon an M in Sy with
ten nodes, Nyr = ragay the maps of sextics with a iriple
root. Mz conta né 15 planes myy each o map of sextics
with a doublgnyoot,  The plane wy and node nyge ave
incident. H& % also the map of an S3{y} by quadrics on
Jive pom{é‘ Beo oo, gs (of, 30 (18)).
Tu the, latter mappmg directions af ¢, map into the plane
g3 ﬂlP %dne 1 G2 s maps into the plane m,;; and the line
7 gz\mapb inte the node =gy,

~or given Rs on a conic, the linear invariants @ - S
shbject to (5) behave contragrediently to a, ..., 7, and there-
f.nre (cf. (17)) to 4, ..., F also. Hence theae invariants map

such sets Rg on K upon the Sy's, @, in 8,. Since ds == a5 — 4a,
(ef. (10}), the locus of 4 is a _quartic envelope, ;. When
ey == ¢ then (cf. (8)), @ =d, b=Ff ¢ = ¢ and the 8, 4,
s on the plane m;,. It is easy to verlty from the equation
of E% that @ is then a double S; on K. But M3, having
10 nodes, is an envelope of class four and an S; on one of
its 15 planes is a donble Sy of this envelope. Hence
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(19) The linear invarionts of R om a conic wap such sets
wpon the Si's in Sy which lie on the quartic envelope Ef, the
reciprocal of i,

One may verify algebraically that point, 4, and S;, @, are point

of Ms and tangent space at the point. This situation gives

rise to eguations which express the @ as quadratic polyno- - N\

_mlala in t__!}__e A as well as equatinnq which BXPIESS the~

(28), (32), ( 33))

(diven point 4 on 1 » and tangent space @ at 4; the p(}]dl
quadric of A4 cuts M in a locus of points 4’ w&mh is the

map from S, of the Weddle quartic surface Wi (cf. 36 (IQ)

(20)), the point y mapping into 4’. The tgnzent space 7 at

A’ passes through 4. On the other haxfl ‘the point section

at A of the reciprocal Hs, i. e. the Sgsva', of By which are

on A and thercfore have r:mﬂact;}»,éi’,"has a section by an

arbitrary 2, not on YIWWERRUHRIRYegHe envelope with

18 tropes, and therefore a Kun’l;’nér quart.ic. envelope K* The

tropes of A* are the sectlons by 3y of the tangent S, =,

and the 15 Sy's which 39113 A to the planes s *rU Thus point ¢

on the Weddle which\m\aps into point 4’ on My is bn ationally |

related to the plane(of K*in which 33 euts the S, ¢, tangent

to M; at 4. N

41. Theory of the Weddle and Kummer quartic

surfaces\in binary notation. The special coivdinate

system (£.17) set up by a cubic norm curve, €% in .5 leads |

10 mtel'csrlng forms of the Weddle and Kummer surrace. ;

\\ e yecall that the coefficients, — a5, Sas, — 3@y, @, of the

binary cubie,

(aip = (a, §,+ o, £
= a, 854 Bay B34+ Bay b, -k ay 1
are taken as the coordinates of a point in space S;. If in
pavticular (4?)® is an actual and not merely a symbolic cube
the point lies on €3 The reader will observe the double
use of a,, #, on the one side as binary symbols and on the
other as actual coefficients.
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With equivalent symbols,
== (aty® oz (b)Y,

the Hessian is (a?)*{af) BH*= (pH-(g8), and the cubic can
be expressed as f= A{p1)°*+ e(gh®; 1. e. the point represented
by f is on the chord of €™ which euts /% in points Py
whose parameters are the roots of the Hessian, Thus for
given ¢ in ‘O

(1) (b (af) (b) == O, O’

we have the equation of a quadric (sinece thgé"é‘oefﬁcient-s
of f enter to the second degree) which is theé eeus of points
on a biseeant of ¢** through ¢, i e. the \quadrie cone on C*
with vertex at . TFor variable ¢, (1) j,s\\tl'le equation of the
quadratic system of cones on 9, L ¢

Let (88)*== 8, 2+ 28, t,+ 5 tf~ be any quadratic form.
Then _ Q»."" 3
(2) v PriaBhadg) one i
is again the equation ofS% guadrie, the locus of Disecants
of €% which meet Q& tn pairs of points with parameters
apolar to (87)% I{ér‘ variable 8, (2) is the equation of the
net of quadrics,f}r 3,

The Weddle sirface is determined when its six nodes Qf
on (* ayel%iven; let these points have parameters de-
termined, by
(3) ;N t)l = ag 846, 84,4 oy 0 0.

Then
() (@) (@b) = 0

is a quadric which cuts €? in these six nodes. For if (a?)?®
is a perfect cube, i.e. (@) = D) = (¢’ ¥ =t —h to)*
then (o a)* («b)® = (e 'Y (et} == (a¢)5. Hence the quadric (4)
does not contain C* and therefore the web (cf. Baker® p. 56}

(5) Bs (aa)® (ab)® 4 (ab)? (a8) (bB) = 0

*1t should be noted that the interpretation of the symbol (mn) depends
upon #t, n, For cogredient symbols, (eg) = &g fy — u, f; for cogredient:

variables, (st} = soti~~81%y; for symbols « and variables ¢, contragredient
to each other, (o) = «gty4a,t,.
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of quadrics with parameters &, f, 8, B Is the web on .
On aceotunt of the symmetry of (5) in the equivalent symbols
of f the polarized form of the web is obtained by assuming
(atyFHD

If we assume that the polarized gquadric (3) has a node
at the point o the coefficients of By, &y, by, by must vanish
giving vise to four equations bilinear in the «’s and the #s.
It from these the A's are ehmmated the equation of ‘t}w
Weddle surface W determined by ¢ is obtained, It honer
the &’s are eliminated, the equation in planar coﬁrﬁmateq 8
of the Kumer surface K is obtained since pl@xe gections
of K correspond to adjoint quadries of W (¢h87).

The expanded form of (5) is N
B {ao (g ttg — By otg + 3by s — by @), \;

— Bty (Bpes— 5’?)1 ey + B by ey — by 22y}
+ Zas(bp ey — 3b, a3+ 3o sz =\ “1)
v b?,“h»i LY PIGINL S b 0y — by o))
+ Bolar by — 22 by a3 I}r}
T‘é’ {— g by B ata by — ats b}

4 Bulag by — 2 al.h'\%—..’ag lo} -
The eliminations mentioned yield the following determinant
forms of W erdL\K (Baker? p. 62, p. 56):

6)- \{\‘ W o=

! aq% Bty vty + Bty ey — 015 (1] —dg e ‘

j 3{.‘\.@0 o+ By ey -5y oy 1 dg @) tta as  —2n !

{\\' Blagey—3a s+ 3o ey —aye) —2a M o l]

|V — gy +3a as—3a + a5 & ity - thy o
- 0;

(1) K =

|_. F. AT — 3 8 ey 38 e, By “_183“3""31||

‘i — 3 Ba vty 98, ay— 28 — 9B+ B BBt Ao

l 38y a4 A — G 8y a5+ 5 98y — 25 —38 !

| — By ey — 8, 385 a9+ By —3 4 & By e |

== 0.

N\
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From the mode of derivation W is a simuftaneous invariant
of the eubic («#)® and the sextic («{)’, of degrees four and
one respectively. It must thercfore be the bilinear invarviant
of {e#)® and that sextic which is the pwduvt of = (afy
and its cubic covariant f' = (a'a’)? (¢'a”") (d" 1) (' )% 1. e,

(8} W = (ae)® (a"e) (o) («' @) ('),
O\
Since the relation of £ and f7 is mutnal, the corresponding
points in 5; are partners in & Cremona 111\'01unou of the
third order (whose pairs are on chords of €° wnfi h’i‘tmomt‘
to the crossings) under which W is invarianty ~\ _
Similarly if K is arranged according to_pbdv ers of 8,. say

INY

(9 K == Ku.ad‘l‘-lKlrgs”—bKOﬁsT\lj\113{—"}\1-

the coefficients of the varions pmyers are simultancous in-
varfants of the quadvatiodbfeplibimiyione Rextic («f)° From
the deprees in the coeﬂiciejlfts' as well as, to some extent,
their form, we may conclu@e at once that, to within numerical
multiples, X, is the ga"t.;}lecticant of (e #}°; K, is the bilinear
invariant of (86)2_and the quadratic covariant {we)* (ae”)y
(e’ a”P (e"1)*; Ky)s a linear combination of the bilinear in-
variant of [(#NF* and (e} (@ )® (¢’ )%, and of the produet
(B8 (« ¥ K, is the bilinear invariant of [(8#)7)° and («H%;
and X, ‘Q—\[(ﬂﬂ’)"]? From the form of K, it is clear that
B3 == 0 is the planar equation of the node 0, 0, 0, 1 of K. This
is t«he ‘node 1 = O in 37 which ecorresponds on W to T'IIP
\u‘hlc curve €7 since the yuadric () contains €' when 8; =
A section of the Weddle by a quadric on the nodes is
determined when 8, and the coefficients, 8,, 8, 8, of (3¢
are given. The corresponding section of the Kwmnmer is by
a plane with coefficients 8,, 8, A, 8s. In particular, if

(10} (et == (B 0y (ht) - ity (B} = tio ts— ti1 Fa),

the tropes of the Kummer corresponding to the six cones on
£ with respeetive nodes at (f are given by



41. WEDDLE AND KUMMER QUARTIC SURFACES 145
(11) (B0 Bs = (H% 0 (@ ==1,--+, 6).

We seek then the further values (84)% 8 which define the
ten remaining tropes of K associated with the ten pairs of
planes on Qf, If then

19) (e}’ = (ct)®- (rt)’, Q
U2 00 — W BOGO, 00 = GOGD G, O

N

the equation of such a pair of planes is
{13) Dypy == Dyg = (we)®- (@' 7)® = 0 (¢

In order to express this in the standard foqn (5) the produnet
(e£)®. (yz)® is written in a Clebsch-Gord \an expansion (** 1T
p. 86); i.e.
(0 o) = (D B +3{(c:?’) (ct)g(:’t)‘}z {tr)/2
+ 9 {(e2)* (c) ew)ﬁdbmﬂbm FEH - (1) 4.

If in this ¢, ¢ are replaced by contragredient symbols a, o’
respectlveiy there result$
Digy =ea) (40P = (o) (')’
*3{(@) {2 (r )2, (ad V(@) (@ /2
+81EP (08 (), (2a* (0 (@ HF/10
\Jf\..tcr)s (na')*/4,

ﬁhere if, ¢ is' the k-th transvectant of f and ¢. Since
(eratl }(at} (@' & ==0 and {aa)®* =0,
B123 = (ca)® (ya')’

= (e (ea’Y+9(aa ¥ (at) (d' D), (er)®(ct) (rD]}/10.

By ecomparison with {5) we find that
{14) The ten even tropes Dysy = Do of the Kummer surface
are given by
(8 3)25 B = 9(-3123 t)g; 10
where
(Biaa)? = (Buse £)® = [(1i1) (&1) (D), (8:1) (51} (s 3] 8

13
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The ten quadratics (8,556)° are linear irrational eovariants
of {et)®. It may be proved that only nine such covariants
are linearly independent with respect to numerical coefficients
and that all may be expressed in terms of the teén given
in (14) which themselves are related as in

{15) Zo By 9)* == 0.
In order to find the nodes of the Kummer surface i;L\iQ
convenient to use as point codrdinates by, by, by (the coeffice

fents of the quadratic (5 ¢)%), and by with an incidence ¢éndition
with respect to the above planar cotrdinates of gite form

~
(16) (0BY + by 85 = 0. \N%
In terms of the usual codrdinates y, ¥ juhié:is eguivalent to

oty iqs == for 2By Bt Ay

Yo'Yrils iUy = bg{rj:ffbl thy i By

i wror dbraulibrary .org.in .
The node Py is on the'three t%%li)e];}ﬁy:m f{t: H: 0, Di=0° 0

(cf. (11); and Dgx == 98, 10. Tt is easily verified that
Py = 10 )] (% 1), —:@ [(fg ) (3_; f), (.31;;;; 9%, The result.
should be symmetyig\in %, I, m, n and by a direct cal-
culation of the t-ran%ectants one verifies that

QA1) oy = [RGB, (d) -+ 8D = BIt5 1) (48), B d).
Thus K7,

(18) T?ag\;ﬁ}“téem nodes Py other than w==0 (0,0,0,1) of
the, Kummer surface are given by

~O° BO% b = 1@ (4), — 3y,
N\ Sinee (B ©® ean be determined from its bilinear invariants

with respect to the three independent gquadratics (¢ {# ),
(t: 1) (8}, (1) (e 0), there follows from (17) that

3(Byut)® = 3{Bmat)®
(19) = {(jk) e (8 02 (4) Ck,i(tj OF+ () e (i 23)2}!r (@7 %)
= {(mn) twn (1) -+ (1) oz (B 1)

+ (g’m) Clm (tﬁt)g}.'r (Z?’R?%)
Whe’re (Em% e ') = (tf. tm) (tl tn) (tm t‘n) P
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Parametric equations of the Kummer and Weddle surface
are easily obtained in the representations used here. I (a)®
is a point on W such that the bisecant to C? meets C® in
{ = r, t==g then (a?)® = A{rf)*-+ p(sf)®. The cubic covariant
of (af)® is then A(r&)®*—pu(st)®. The product of the two is

apolar to («#)® as in (8) if A*(er)’—p¥(as)® =0, ie, if
i o= Viies)®: Ve, 1f then we take the underlymg
A
relation of genus two in the form A
(20) §: &= (alf, &= Vierr, N

 {

(at)® represents a point on W if (aff® = zg(-rt)j‘"~f>~3r(st)3. It
arises from the pair of points 7, z; s, & (oxNthe superposed
pair », —zr; 5, —zg) on 8. The Semlld'\a{ﬁ':of pairing thesc
four peints on § into v, 5 5, —zs apd, — 2} 8, 25 yields
the -gecond point on W on the biscéaht to €® through the
first point.

If in the equatioh ”(:%bYS%l*{’h%f Y8 on @ we set
(at)® == (b8)® = 2,(r1)*+ 2(2F it becomes the equation in
planar coordinates B, 84 ¥, 85 of the corresponding point
on the Kummer surfa{ég The result is

N
By [z 2o e ) (e s)’} + (r9)* (Br) (89) = 0.

By (Omparla&{l W] h the incidence relation (16) we find that

(21) Th p?(»}‘{rmetmf equation of W referred to C° in ferms
Of(m points, 1,2, and §, 2, of S in (20) 48 given by
f43)3 === zsfr 1)3—1—2'.;.-(515)3' that of K is

\ > (B2, by = (rs) (rt) (st), 2r 25 (@7)® (@s)’,

If # == s, the point of K is the nede w = 0 with coordin-
ates 0, 0, 0 1; it {r&) (st) == (t, ) (1, ©), the point of K is the
node given in (18) since (a#)® (at)® = —Be;lh 1110,
This parametric equation of K differs from that given by
Hudson (* p.19) in that the coérdinate plane opposite the
node ¥ =0 is not a particular even trope but rather the
sum of the ten even tropes for which, according to (1),
(862 =0 in (8% B. This particular plane section of K

10%




148 III. FUNCTIONS OF GENUS TWO

corresponds to that quadric on @i, (@e)® (@d)® = 0, which
has the projective definition that it is apolar to the net of
quadric envelopes on the planes of C%,

The planar parametrie equation of K in terms of (r{),
(st) is derived as follows. For {a#)® in {5) a point of W,
{88 B are {0 be determined so that (3) is satisfied by all »
values of ¥. Thus on replacing symbols & by variables ¢ to
obtain 8 (¢ a}® (« £)®— (2 8) (a1)* (81) = 0, and then repla¢ing
(at)® by 2z (rH)*+2,{s)% the #'s are to be det-ermi’néa_ 80
that N

Bs (25 (o7t 2, (@ )] (e 1) O
(8 [ (r 2 (B7) + 20 (0 (BE) == 0.
If (8{)® is expressed as PN
(22) (B = ky (rt)* -+ 2k (r ) (0@t hia (s 0)%;

and if («f) is expressed in terms of (r¢), (st) from (vs) (a?)

= (g1} (ar) —(r{} (a 3§;Wﬂiébfd§ff§!if§r 15°58ilvfied when

bo = < Bnules- () as) ey ()],
(23) By = zp 25 (?'3)4; k}‘:-‘-‘% Zy g [fr zs (“ )" (“ 3)31;

Hin== 8z [es- (ar) (@s)F-2r - () ()]
Hence \

(24) In terms @fidhe binary parameters v, s and the érra-
tionalitysgy zs the parametric expression of the envelope

X 'é:*\.t;"g‘:;é}l by the (B, By defined in (22), (23).
In p;’dér to connect the algebraic parameters », s of a point
on JFOr K with the hyperelliptic parameters u;, u, We pursue
e article of Schottky ® begun in 37. We first observe that,

) 2

a¥ a consequence of I8 I3 the function

Iy’ Wl{u)- 8/ 8w Hg, B (w) — g, k) () 8/ 920 (g, 71 ()
is a theta funetion of the second order and characteristic
lg+9¢', h+A1. The theta relation,

(25) 0y Sy Pugs + g Fo Py -+ 00y Py i = 0,
hag the derivative

2ol 0 8u St Sk /00, 9) = 0 (i, 4, k=1,2, 8.
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Setting Xy a; [%; 8/ 02y Fjre— Pjps 3/82; 5] = 2 By we observe
that R; is an even function of the second order and character-
istic Prs. It is therefore a linear combination of &, &; and
Gias hog. Since K, and & % vanish for w = 0 while
Hios Fres does mot, K must be a, 3y &5, With a similar
argnment for derivatives with respect to u, we find that

@y Fy dagy g Fo dFg1q+ 05 Fo dP1ag '\:>
(%6 = (& dwy + ap diz) 3,4,
) oty agy A+ g Fapy Ay 16 Fraa N

= —{a; du,+ ﬂssm{i@ w5 .

Tf (25), (26) ave multiplied by I7$, 95 s . and the planes
Fiy and guadric cones &; introduced as in QZQ‘I), {3), {4) then

) Gy Fogg + g Gy F134+33'G;F124 =0,
(27) £ 4] FSSédGld‘\%%?ﬁ%ﬁ??@ h{iGg
- _"21}‘2(&1(;&14‘32(:1“5
Let ) "
(28) P:Glj,Gz'---'GsZII”.

Then 7%= P4 and ]?‘K\z P2 = (F, Gy Gy Fige/ Fips. Hence

on W there is a,liméar fumction, v = — (@ iy + ap%), of

the arguments ! ,,\ %. whose differential can be expressed in

the form {0

(29) di»‘"é\s(“al F234 dGl + oy Flsi— ng+ g Flg4 dG3)fflP1;4
o = — (oty Gy d Fopg 005 Gs dFy3s+ a3 Gs d Fyp)/ P

@ Gy Fypa -t g Ga Figs -+ s (s Fipy = 0.

Because of the unsymmetric character of this expression
with respect to the nodes 1, 2, 8,4 of W there must be
a second differential of the same sort and hence du, and de
admit of such expression. Schottky then closes with the
remark that if yo, 3, e, ¥s are planes in Sy and Qo, 1, @, Qs
quadrics on QE, the 16 cubie surfaces g @ on Q§ must be
connected by two linear relations Filgq, -»-, #a5 Qo == Q) =0

Q
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(z = 1, 2) (cf. Baker® p. 78). Thus on W == 0, for proper
choice of the numerical factors in 73,

(80) dus = Fildys, -+, dys; Qo, -, @y PV (1=1,2).

If now the pointy in S is determined by the coefficients
of the binary cubic {a£)* with hessian (% ¢)% the two relationg ™
F; == {0, just mentioned are a consequence of the fact b}{at
the eubie has mo linear covarianf, and therefore the\ p(yla,r
(ha)® (ao) vanishes identically with respect to g\ 01 For
here the coefficients of {%#)* are gquadrics not merel} on Qs
but on €% Hence ,w\

(31) dv = (hda)? (daa)/(ht,)*- (h tg) \ (R

since (A#)? 18 a constant multiple of G’,,\l P and the constant
can be incorporated with e, 0’1 Takmg

(a)® = (r t)s/zr—lﬁ'fs“?)(*bé;a,“b{ﬁli PLE ()t () (8) 2y 26

in order to ensure that W — 0 and also that the coefficients

are of degree ZEI’O,{F}: the parameters 7, : 7, and g:¢, and
recalling that B\

z ;:(jdr)“, 22, d2r = 6{r)® (wdr),
we fmd thaf
@&_\{)3 = — 3(er)® («) {(rO? (rdvr)/z (2y)
— 3(es)® (at) - (s)? (sds)/2s- (@8)°,
M\(ﬁﬂa)g (dae) = 2(rs)® [— ('rcr) (rdr) 2+ (30) (3d8) 24/ 2r 255
' )t - - (r )izt 2.

On substituting these values in (81) and incorporating the
factor 1/212 with ¢,, ¢ there results

32) dv = —(ra) rdr)/ e, (36} (s ds)/ 2a0

The general integral of the first kind with paramefers oo, iy

for 2* = (e’ is- | (— 6y -0, ) d £/ 2, or, in homogeneons form



42, THETA RELATIONS AS PROJECTIVE RELATIONS 151

with £ = #: 1, isf(frt) (¢df)/ze. Hence, dv = eedu,+S8dus

where
¥, —2, 5,2,
U == dvﬁ—f dv,

r,—2, 3,2,
He == i g ‘I‘ a Ta,
[
N
23N

p; and v, being the normal integrals of the first kind. ¢

42. Theta relations as projective relations. .Ju- fhe
foregoing sections the theta functions of genus two ‘have
heen connected with the projective figures: Pé'“(‘cf\. 35), six
points on a line; QF, ¥ (cf. 36), six pointsNin &, and y
a point on the Weddle surface: and Rg,xi@(cf. 39, 40) six
points in the plane on a conic with a"?e}enth point € in
general position, The codrdinates of(the points in such sets
are related by a \-'a.riem \gfd etermiant identities, The ratio
of two terms in such an i'deﬁifty “catl De expressed in terms
of double ratios determined “by the projective figures. On
the other hand (ef. 30) _the" theta functions are subject to
a variety of relatiogs¢which essentially are identical with
the prejective relat-ioﬁs which are consequences of the deter-
minant identities.(> We give here the formulae by which the
transition fl'au{lone type of relation to the other can he
effected. _ &

‘Beginpin\g" with the modular relations (30 V, VI) let
p; =%, --+, ps be a planar six-point with determinants

| igki= pi, i, pe|; and let

\ 3

(1) 19-:%;;; = S = Eijk Ermn | 17K [ Imn -

The relations ¥ then show that these zero values of the even

thetas define 7 projectively (cf. 40 (8)) since the dftel‘miﬂant
products satisfy the same linear relations as the namely:

(1Y b4 6mm | 5K | | T | 4 (1Y% &4z Samen | 871 |km-‘*n|
T (1) €41 8 jn [ 1| || 4 (—1) 655 e | 7R | Limn] =0,
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Sinee the modular functions depend on three moduli and
P? depends on four absolute constants the six points are
subject to some relation. On substituting from (1) in 30 VI
and comparing the result with 16(5) it is clear that the
set P is self-associated and therefore on a coniec. Thus
of the 15 relations V only five are independent, and of the 15 ,
additional relations VI one is sufficient to imply to ()ther:,
If the conic on P is taken in the mormal form ‘O
7NN *
Wty e = Pl 1, “:":’«.

and if the point p; has the parameter ¢ = g, then'T'}jki = (ij k)
(ef. 30 (9), (10) (14)). The relations VI theh reduce to the
binary identities 30 VI® and the relations N/to the determinant
identities 30 V°. If shounld be emphaslzed however that the
Pi thus defined on a conic is not Jprojective to the set 27
mentioned above. Thw(ﬁmtag;ﬁg,}égw%nnthe two is brought
out, later (cf. p. 155). o

In the diseussion of the set (%, y it is more convenient to
use the theta relations 3&1" i., IX® as revised by Schettky.
Since @ is associate mth b4 determmed byt=e(i=1,---,6)
the gquaternary determinants are proportional to the bmary
differences and e set

o .

(2) \:\’ |ﬁjki: = Eiilmn {(m ?’.',)
The quatemaly identities then are satisfied by virtue of the
bmary identities, Tn harmony with Schottky's definition
87 (1)) of Fyx, the section of the Weddle surface by the
plane on ¢, gj, gx, we set

{3) ligky| = eyjpumn (Lmn)o; () ; (1) ox (1) oy ()
where as hefore
(Imn) = (Im) (In) (mn) = (e1— em) (61 — €,.) (m — €n)+

The relations 1°, VII°, VIII® are then consequences respect-
ively of the determinant jdentities:
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(284 ¢! 1166y — |184y;,256 y|

+ 124y 356y — [128y 456y = 0,
2856 156y| — 13561256y 4 '1256||356y == 0,
1263|346y — | 136, 246+ |: ' | = 0.

The other velations involve the odd functions whose squares
are to be identified with the cones &; with vertex at ¢; and
on €%, FExpresgions for these cones are obtained from IV" s,
Taking IX” in the form . O

Tigs (1) Orgy () -— s (20) 0300 () = £ (23)(4D) 7 (“) ‘thﬁ-“}

~\

and multiplying by 620, 0, 6, 6, to introduce the determinants,
the cone @, is obtamed, and in conformity “ch this result
we set in general AV

Gy = dhmn|lijin|ikly, ijmy O
@) v AR by T Ly
= (jlklmn). {l. o (ﬂj..

The apolary invariant, ¢, J,-;“,\Of the pair of points g, gr with
respect to the cone ;¢ 1&

(El) 9’: ﬂ "—— £ iktmn (j‘ fm) (E mn)
The relation cmn\ectmg four of these cones is therefore

Jkanm \n'n) G+ gy, (Gmn) Oy
S -L Eijtmn (?ﬂ ¥ ?t) (H.,"L Eiikmn (I m -'1) 77 == 0.

(b)

m:.\’:.
This\g \‘a. projective quaternary relation if (immn) = (fmjini(mnl, -
are modified by using (2). Tf in the projective relation (b)
the G are replaced by a2 («) from (4), the theta relation II°
is obtained in the form

(©) (kD0 60) — (kD02 (o) + 6D oF () — (R 0 () = 0.

Projective relations connecting the pairs of planes on % and
the cones'@; may be similar}y established and similarly trans-
lated to obtain the theta relations IF1° and IV°. Thus the
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transference formulae (2), (3), (4) suffice to establish the
identity of the projective relations with the theta relations.

We consider now the set R: which consists of the six
branch pomt:-, E; and the node O = r; of the hyperelliptic
curve Hs. It was noted in 39 that this set 12 is associated
with the set (¢} — Qi. y determined by a point y on W,
whence

N\ ¢

(A) ikl == egigmns mnT,, lighky, = eyprmn | im n.j,\"\\
Comparing this with {2) we can set “z".}«:“

(e} imnT| - (nn) “\\

whick states merely that the lines tromapy o Fpo - 7y are

projective to the fandamental binary se?tlb Then aceording
to (1) {

‘!' - ¥ — [l L !}‘ lll I
(B & b Fn W\,\/’H“br‘?uh{a}’{im} tﬂ? I'| Im T HnT 'mnT,

From (3) and {d) there 1’01}8“‘\

| &k | I???tﬁif’;\—— (b)) (G - 1 - 0y, (20).
W

If I7 be deleted(fyom the squares of the o(2)s as a factor
of proportmnahtrj and if the o¢’s be replaced by the 9's
(54 30(10 (\11) and (D) above] then

O
6) &N 95 ¥ =

‘o

".Agam if (Q) be applied to &; in (4) the factors ¢ cancel
fd G; becomes after deleting /7 and passing to 9 ()
(ef. 30 (10}, (11)

Hy = {17 hem 7] | jman| (kin|— k1T jmT||jln} |kmn
= (jkimn)"”. 97 ().

lejkiifmn .

Uk Ermm

(7

In this (jklmn) = (&) -.- {mn) is to be cvaluated for the
plane from {e), Hence by virtue of (5), (6), (7) the theta
relations 301, ..., X are satistied by the planar set R
The cobrdinates of the six branch points % can be rationally
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obtained in terms of the irrational invariants !Z7kj Imn

(ef. " I p.197). When these are located the double ratios

of the six lines #;—#y, ---, vy can be rationally obtained

from (5} (cf. ®*) and #; == O thereby is rationally determined.

Thus the hranch points and node of Hy are expressed ration-

ally in terms of the theta and modular functions. For vari- | A
ation of % the projectively distinet but birationally equivalent ,
types of Hs are obtained, The oo® sets of six branch pomts* 2,
are those sets on & conic for which there exists a pomtqu

with given fundamental sextie {cf. the interpretation of 40 ).

It is possible also to satisfy the theta relations bxequatang
the theta squares to binary quadratics since da’\41 the co-
drdinates of the nodes and tropes of the Kumimer surface
are given in terms of the coefficients of s\@ gquadraties.

’Q
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CHAPTER IV

GEOMETRIC APPLICATIONS

Q!

OF THE FUNCTIONS OF GENUS THREE

N

¢\
The theta functions of genus three are defined by wpe?ficd
scheme which is determined by the normat iut.eg‘rg,{l‘s\’of the
first kind attached to an algebraic curve of sgemus three.
The canonical curve of genus three is a planequartic curve
whose 28 double tangents are associatedN\with the 28 odd
theta functions of first order., This doublgm\igent configuration
is determined by an Aronhold set ef~$even double tangents
or dually by an Aronhold set of seyefyj}oints, P7. The 36 even
theta functions of the first ordeitare associated with systems
of contact cubies (c¥¥1Y5° raﬁi\‘:’%}a{@ijgggﬁ?apping the contacts
become the plane sections of space sextie, the locus of nodes
of the net of quadrics on™a self-associated set of peints, Q.
The purpose of this, capter is to obtain parametric expressions
for the coérdinatgs\}f the sets of points, P¥ and ¢f, in terms
of theta modulapfinctions and to show that the transition
to congrnent :s,?ats under Cremona transformation is due to
period trans?brma-tion of the functions. With respeet to such
tra.nsfq@iafion the irrational Gapel invariants of the guartic
curyfge?;piay a fundamental part., For later geometric study
i the functions of genus four Cayley’s dianodal surface is
Niptportant.  Schottky has givem an interesting parametric
equation of this surface which may be utilized to study the
nature of the seetion' of the generalized Kummer surface
Ky,(p==3) by one of its 64 contact sections, i. e., the extension
of the coric on a trope of the Kummer surface.
43. The figure, P}, of seven coplanar points. The types

of Cremona transformations under which_a set P — Praera P

may be congruent to a set QF = qu, .- -, g7 are listed in 6 (10).
These types divide into pairs €y, Dy; 4s, Dy By, Ds; i, Ds
156
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and €5, Dy, In any pair either type is the product of the

other and the symmetrical type Ds. With respect to I we

prove that

(1) If two sets Pi, Qi are congrent wunder Dy with directions
at vy corresponding to the prmmpal curve Plgig -+ q,)°
and vice versa then P5, QF are projective in ﬂae natzmef
order,

Let K(p) be an elliptic cubic on P§ with eanonical elthu~\
parameter ¥ {i, e., w; + 4y -+ 4 = 0 is the collinear congition)
and with para,meters wg, <+, u; for P{. Then K(p)y is frans-
formed by D into a cubw K(q) on @ and ;r(?u\on K(p) ix
transformed into ' () on K(g). Since the dizéction at ¢; On
K{g) arises from the intersection with {i’@)‘ outside P} of
the P-curve of g;, the parameter of ¢ oh “K(g) i3 —u,—a
(¢ == w,+-..4u;). Three points ¥hp w of K(g) are on
a line 1f u, v, w on K(p) are on anjpctayic with triple points
at P¥ 1. e, if u+ v—L\&WA}L ':Shfm@ral Hereeitore the canonical
parameter on K(g) let o' == n-{~0‘ and then (7 has canonical
parameters — i, ..., —auh, Since K(p) and K(g) are bi-
rationally equivalent thgrb is a collinreation which transforms
K(p) into K{(g) with*& ) passing into 2'(«'). Also there is
a collineation which leaves K(g) unaltered and sends the
point »’ into —u \Hence Q on Kig)is projective to Pion K{ph
The argument\uSed here is essentially the same as that by
which the\generator of the group em,x{cf. 15 (5)) was obtaiued.

The nﬁﬁber of sets QF congruent in some order to Ff ix
the numbm of ways in which Cremona trankformatmns ot the

0%& types can be selected with F-points in P, 2 for
Co, Dy; 2{3) for As, Dy; and 2(1) (g) 2} (g} 2(;) for
the remaining pairs, or 2, 288 in all. Siuce congrucnce under
Dy implies projectivity only 2%8 are projectively distinct.
Hence
(2) There are 71288 projectively distinct ordered sels congruent

to a given set P;. These ordered sets map as in 7(1}
into T 288 points in 34 conjugate under the Cremona
group Gqre in 35, The lincar group gr: {ct. 6 (2)) is in
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2 to 1 isomorphism with Gr with the tvariant eement

of g2 arising from Dy corvesponding lo the wdentily in G g,

The set P7 has 56 P-curves: 7 sets of directions P(5)";
21 lines P (7' 21 conics Pighim)?; and 7 cubics
P jklmno)®. They divide into 28 pdlI‘S each ]}dlr makmg up
a cubic of the net K on Y. Weset Dy == P())'. P(Z jklmng),
and Dy = P PEimno). Since these comprise all the
degenerate cubies of the net ou P,, this divisien 1nf0~p\dxrs
is invariant under transformation to congruent bt’t:s*

The set P; has 63 discriminant conditiong 9 of type
0y = Oximnos = 0 which espress the coincidénte of , p; in
some direction; 35 of type Sym = Opnne s Which express
that p:, pj, px are collinear; and 7 of fype 6 = djpmno =0
which express that the six points ath&; 1an p; are on a conic.
We proceed to identify the 28 paire’ Dy (2,3 = 1, -, B) of
P-curves with the double points,of'a general quartic eme]ope
E* and the 63 dawmhmmbmnmhmms ¢ == () with the ir-
rational factors of the dlscnmmant of K*

Since QT, congruent to "P? under Dy, is projective to P
the sets 7 and P— 1nay be taken as superposed and Dy then
becomes a transiq‘unatwn I. The square of T is the identity
since, under %) P(¢)° is invariant. The involutorial trans-
formation I\carues the net K of cubics on P5 inmto itself
and 1nte,rNIanges the parts of a degenerate cubic D;;. Within
this \Lket K, either every cubic is invariant or clse there is
a_yencil of invariant cubics and one invariant eubiec not in

~Ahe pencil.  Since 27 of the invariant cubics Dy can not lie

o

fn a pencil, every cubic in X is invariast, The pencil of
invariant cubics on z must pass through the partner &’ of &
under 7. Thus I is the Geiser involution (cf.? p. 122) of
pairs which with 77 make np the base points of a pencil
of cnbics,

It ' coincides with « along some direction, the pencil on
has contact at x and some member of the pencil has a node
at z. The converse is true also, and the Jocus of fixed points
of T is the jacobian, J*, of the net X, the locus of nodes
of the net, a sextic of genus three with nodes at P;. The
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directions at p; on the P-eurve P(Zjkimno)® are self-corres-
ponding and are the directions at p; on J® which passes
also through the intersections of P} and Plklmuno).
A lne E is transformed by 7 into an octavie which meets &
in the six points common to & and J° and in the one further
pair of correspending points z, ' on &, As & revolves about »
a point y the pair of I on § rums over a curve which passes
once throngh y for & = yy’ and once through p; for & = gpe)
The curve is therefore a cubic of the net X, say }i}(y'),
which has an equation of the form (e2)® |exy| =@ Thus
the pairs of I form the principal coincidence gf’ connex
(1,2), (ax)? (af) =0, (@& =0 (cf.® 111 p.41]). The fonr
tangents from y to K(y} are the lines & ony on which the
pair z, £ coineide at z on J® whence th@ [ocus of lines &
on which the involutorial pair is commdent is a quartic
envelope E* of class four and genus~three birationally equi-
valent to J*. Two “aﬁwthg&gufg;}gﬁ‘}agggqﬁs from y coincide
only when K(y) has a node &t the four coincide into two
pairs only when K (y) 13 bitodal and therefore degenerate.
Thus the 28 double pomts of E* arise from the points y
attached to the 28¢dubics Dy. On Dijs the lines & joining
pairs of I are ongp— p;, 1. e, £* has nodes at P, On Dy
the node y of\E%is constrncted as follows, If o is the meet
of P(12)* dn({P(sél-)’, its partner x' is the meet of the conics
P(3456732 Y’(i?:)b'l’)2 outside p;, ps, pr which is rationally
known {The line & on w», 2° meets P(34567) in y = du»,
a nc@é' of E*. Hence the 21 remaining nodes of E* are
{il\sh rationally known and linearly constructible when the

ven nodes P are given. Sinee P} has 6 absolute pro-
jective constants, ! must also have 6 absolute constants
and be a projectively general envelope. Otherwise £ would
arise trom infinitely many sets P¢ and have infinitely many
nodes, It will appear in the next section that any three of
the nodes in P are azygetic (cf. 14) and thus that P s

i

an Aronhold set of 7 nodes.
It Q:- is congruent to P under (,remona fransformation T

other than 7, the net of cubies K on P is transformed into
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the net K on ¢% and the nodal locus J® of K into the

nodal locus J° of K’. Since J° and J'° are thus biration-

ally equivalent, the envelopes E"l, E'* defined by Pf, & are
also birationally equivalent and therefore {as eanonical curves
of genus three) arve projective. The collineation which carries

#'* into E' carrics the Avonhold set of nodes €% of £ into.

an Aronhold set of E’ which iy different from 27 since

I Q‘, are not pro]ecme Henece )

(3) Tife 288 sefs Pr congruent in some order to a gwﬂn set
are projective to the 288 Aronhold sets of m@e Wodes of
the quartic envelope E*. The Cremona g?‘({‘g P tn 2y
(ef. () s the Galois group in the prablem of the deter-
mination of the 28 double fangents Q,f & planny guartic
cirve (the dual of EY). 4

In particular under the quadmtic transformation A the
nodes dis, dms, dns, dos of E" a.nse from ‘rhe like named
nodes of £* but tmm@ﬂ%ﬂh,mgmgm of E" arise from
the nodes dg, da, dy rebpecme]y of £+ The collineation
mentioned carries the pg}mts @iy -+, go 0f QF into the nodes
A, diky dijy disy - - doe” of E*. Since the three inverse
F-points of a qua fatic transformation are each rationally
known when the/three direct F-points and four corresponding
pairs are’ givealthere follows:

(4) The geomptric relations among the 28 nodes of a general
gua@ venvelope are consequences of the theorem that (with
gw% nodes dis, -+ -+, doe) the quadratic transformation with

:ched points di, «--, de and F-points di, dm, dis has
”\; “inverse F-points dy., di, di;.

Some of the congruence properties of the nodes (cf.*7IL
pp- 357-9) are derived by Conner *® by projection from one
of the 8 base points of a net of quadrics.

If the discriminant condition d;5 = O i3 satisfied the conie,
P{12...8)% factors twice from the octavies which corre-
spond to line sections under 7, and once from J° 'The
involution 7 is then of the fourth order with a curve Hp of
fixed points with node at p; and branch points at p,, .- -, ps-
The envelope E*is the doubly covered pencil of lines on ps
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with branch lines on py, - - -, pg (cf. ¥ pp. 1256-6). If 8¢, = 0,
the line P (567)! factors once from the octavics and once
from J° Then E* has P{H67)" as a double line. If dy = 0,
i. . if p; coincides with pg along the line &, J® has a triple
point at pe with ¥ as one tangent and E* has & as a double
tangent. Thus the discriminant factors of P7 are the con- ,
ditions that the genus of E* shall be reduced and they there-
fore are factors of the discriminant of E4. These spe«:‘ta}
cases are perhaps more conveniently studied by mapping the
pairs of 7 upon the points of a plane §(y) by meansof the
net X (cf.%° p. 412 (16)). .J° maps upon a quartic queye {'* pro-
jective to E* and the cubies Dyupon the doubleangents of O,

In order to identify the group G+, with the,group of period
transformations, reduced mod. 2, let the GfScriminant factors
8, 0. be identified with the half petidds Py, Pyu respect-
ively (23(5}); and the pairs of P~curves Dy; with the odd
functions 9y (¢f. 25 (G @hﬁ,lg;'&p &3), is generated by
a conjugate set of involutiong\ L,, LJ;,; (22 (10)) and the effect
of I; iz merely to mterchange ‘subseripts 2 and 7 (25 (4)). We
identify 7; (2,7 =1, \7) with the transposition of p;, ps
and Jizs with the g adratlc transformation 4. The planar
permutations thus’effected on &y, O and on Dy are precisely
those effected b§’the corresponding involutions of @ (2) upon
Py, Pyz andapon &; whence Gqp and G(2) are simply
isomorphic{™\"

44. The figure, (}, of eight self-associated points
in ;,g’a"ce. If eight points in space, (5, are seif-associated,
fhe\Bilinear identity (16 (2)} connecting the set with its
associated set becomes an identity connecting the squares of
the eight points whence quadrics on seven of the points pass
also through the eighth and the eight are the base points of
a net of quadrics. This net and its relation to the planar
quartic curve has been discussed in 14. We consider here
more partienlarly the eongruence properties of Qs

According to I6(h) for »r =1, s =0, the projection of
G1s <+, ¢ from gy is a planar set P— whose aqsorlated get in
8pice is Q7 =yl If Q is congruent to Q under the

1t
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regular cubic tl(nnf(ar malion dgg 7, 7, 5 T=1, ..., ;‘) the net,
of quadrics on (g is transformed into the nei on Q * whenee
the eighth base point gy determined by ()7 is transformed into
the eighth base point gf determined by (3;3. Under regular
transformation in space (F s congruent 1o 288 projectively
digtinet sets Q For according to 16 L8) the association of\
the planar set P and the spatial set @7 is unaltered when
the twe sets are replaced by their congruent sets undei_pe-
spectively ;% and dimno. Thus to each type of Cremond drans-
formation in the plane with 7 or less F-points rkwre enrre-
sponds in space a type of regular Cremona W@ {nurmmatmn
with T or less F-points. To the types with £ ()L\‘l(.‘_\h F-pomts
given in 36 (D) we add those with 7 F—;th-s:
N

13 3 a3 31
[7—8 —2 -1 :r*e‘;’ —3 =2 -1
T“: 1: 6 _2 _-:-'2 WEB}‘HE.LLI 11;;:"3 Oli_‘g mu_ ‘2 _—2’-__1 _] ;
34 —2 ORI e 1 1 o
32 —10—1 0N' 112 —I 0 0
1 R 1 4 2
— e - - . S _z .
mre (¢ T2 i -4 —3 —2
1!_ 8 3 —2:T'™1 8 —3 -2 —2;
6l 4 22 0,—1 a6 -2 —1-2 1
R0 204 —2 —1 —L9
Nl 4 B
ey 1B —4 3 T ;m —1
~O 8t8 —3—2 —2 7 1l8 —3,—2

As for the planar case P7 there are here 288.2 possible types
of congruence, Since in the plane congruence under Dy implies
projectivity (cf. 43 (1)) then in space congruence under some 7'
must imply projectivity. From symmetry this 7 must be 7.
A direct verification follows from the product formulae:

Dy = Aggr » Aaga > Argg - dygr » Agyz - {127) (34) (B6);

{2 5 «
) T 2= Aysgy - Aygsr - duges e Asig0 + Arsng - (127) (34) (56). -
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These formulac are checked by observing that, for example,
under the product Dy the P.curve P(1)" passes successively
into P(13°, P(1)°, P(56), P(12567)%, P(1234567%°, P(1%234567)".
This check for each P{¢)" is suificient. Hence
(8) If two sels & Q7 are comgruent under TV with divections
at g; corresponding to the principal surface P{gi ¢F -+ ¢
and vice versa them (O, QF are projective in the natural order,
The T 288 projectively distinet ordered sefs Q7 congruent( o))
a given set Gy map, as in 7 (1) info 7! 288 poa’m‘s.‘iﬁ\.‘fs
conjugate under the Cremona group Grs = Gra. Thehnear
qroup gs s, simply isomorphic with gz, isin 2 o 1~.§9smomki9m
?Lﬁfk G‘?,a. \V
If 5 QF, congruent under 7' and thexefore projective,
are superposed, the square of 77 is th"’icﬁ:ntity and 7% is
an involutorial transformation 1. ’.f_l'fhe set F has 2.63
Psurfaces which pair off under 7' jnto the 63 pairs:
W\\rw.dbl'aulilsj'a{:y.or Ain

dis = Ajimne = P@O Py .- 0%

(4) A = Bumne = Pljl)" - PGIED - 0%
Ay = Aygmpg= P2k -+« 0)* - P(j*k -+ o),
A

These pairs comprigse all degenerate quartic surfaces with
nodes at (ff anddhe pairing is invariant nnder transtormation
to Q. Thesset ( defines also 28 rational curves which
play thespait of Ficurves of the second kind for the trans-
formatioy (1) and 36 (5). They comprise the 21 lines and
7 cybie eurves: -

)" Fy = FGpy  Fs = F(k - 0

The involution J'* carries the net of guadrics on @ into
itself whence ¢, is a fixed point of 7'> The linear trans-
formation effected by J'® within this net is the identity. For
it is easily verified from the product expression (2) that each
of the curves F, is invariant under 7'° whence the pencit
of quadrics on each curve Fy is invariant. The common
member of any two of these pencils must be invariant and
therefore every quadric of the net is invariant. Each of

11*

Q
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the oo® elliptic quartic curves €'* on Q?, and therefore on
Qi = i, g5, as the base curve of a pencil in the net, is
invariant under 7%, If 4y, 4i, As are three guadrics which
define the net, then

(6) 2 ay A Ay = 0 (Lj = 0,1,2)

is a system {o0®) of syzygetic 8-nodal quartic surfaces Witll
nodes at ¢%. Each surface of this system is invariant. More-
over Ay in (4) is a gquartic surface invariant under I"" with
noedes at Q but not on ¢s, Hence the linear Sf},’stem (o)
of all quartic snrfaces with nodes at @7 is _K°

(7) aB-+ D ug A d; == 0\\

where B is any surface of the system not on gy. Kach sur-
face of the system (7) is invariant under F'°. If then C*
is an elliptic quartie” eEubl O 6atR canonical elliptic
parameter n and with 4,39, g (0= w4+ o Lug = 0)
as parameters of Qf, th@\involution on C* ent out by the
system (7), and therefo“i%~ by 7', is u-+4o = Z2us. The fixed
points, for which Ry — Qug, are uz = gs, Or uz-F /2,
s - w02f2, ug P+ wg)/2. If vy is one of the last three,
we define thendight points B = @, s to be a halfperiod
set of s,zghf}}omts The sum of the canonical elliptic para-
meters B{ such a half period set on the unique C* through
it is, a, proper elliptic half peried. All surfaces (7) on 74
taueh 'C* at v, whence there is system {0 3) of surfaces (V)

\Wath a node at »y. If 4;, 4, are two quadrics of the net
on ry, this gystem has the form

(8 a B+ ao A5+ 2 a0y Ao A1+ au A7 = 0.

The members of this system for which « % O are azygefic
8-nodal quartic surfaces. We observe that quartiec surfaces
with eight given nodes apparently lie in a system (oc?). But
the C* on the eight nodes must contdin the eight peints, either
as a half period set {one condition on Rﬁ), or as a self-asso-
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ciated set (three conditions on (3). Thus the eonditions on
the nodes relieve the conditions on the surface and the system
ig either {o0?®) as in (8) or (% as in (8). I B has nodes
at E5 the system (o0 %), AB-+ A A5+ ;45 4,43, has at
least one member in common with (8) whenee #; is on the
Jaeobian J(B, 4o, 41, 4;). This sextic surface is Cayley's
“dianode” (cf. ' p. 3B). As the locus of the eighth node,
of azygetic quartic surfaces with nodes at @ it must e
transformed by Ayw into the dianode determined by {the
congruent set and hence must have triple points at, QN As
the locns of fixed points of 7' other tham g it mast have
the same tangent cone at ¢; (! =1, ..., 7) a8 the P-surface
P52 ..« o®)*  Since the matrix of .J detexmined by A,
Ay, As vanishes on the nodal locus €° (y) Jthe net (cf, 14),
the dianodc contains C®(y). An ellipfid guartic C* on o
is on four nodal quadries with nodesen C°(y}. The three
reflections in the pairﬁl\pf:.&ﬂm%ﬁqgéﬁgﬁﬁ the tetrahedron
of these nodes carries g into, jf}}e" three points in which C*
cuts the dianode outside @, “If ¢ is nodal with node on
C8 (y) it cuts the dianod.q(in one further point, and if hinodal
is contained in parti&t~least on the dianome, Thus the
dianode contains the 28 Fecurves {5). A parametric ex-
pression for the, @anode is given in 48. -
The relationef the set Qf to the double tangent problem
i3 precis f'}siinilar to that of its associated set P§ {cf. %
§ 7). Tiis becomes evident under projection from gs. The
mz.c@’nifes C* yproject into the net of cubic curves on £7
d\the nodal locus C'®(y) projects into J°. The 28 degenerate
ﬂves C* project into the 28 degenerate cubics on P} each
associated with a double point of the guartic envelope E*
From this point of view a full discussion has been given
by Conner?, s
The eight sets of seven points found in the self-associated (s
are congruent (%'s. For, under the transformation I i.n
36 (5), in its involutorial form I7, the set ¢, ---: s, & 13
congruent to ¢, ---, g5, gz The 288 projectively distinct
sets )} congruent to a given set are then presumably found
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in 36 congruent self-associated sets Q‘:. This is a consequence

of the theorem:

(9) The sets QF and Q8 comgruemt to the self-associated set
Qg wnder A and Amuep vespectively ave projective fo each

other.
. - . : )
For, according to 15 (D) the self-associated set €5 on an,
elliptic * with canonieal parameters ey, -+, 2 i3 congruent

3 . N
under Ayqe t0 4 set Qg on the same curve with parameters
ra \

N

f P Il %
Ty = g — Tyessl 2, wp T u - 6100,4"2, \
(-i i ]_’...? ;J—_—"UEI..__B; Tlogy * = it K'\‘_‘_Ji)
s o L
Under Ases the set (5 is projective to

o L ic £t Lo )
Wi 7 wgb Opersl 2, i \?s“J ~ Ugorsi 2.

Since 0y550 + Ousrs == 0, 19a1/2 =% ?—’ sl 2 4 w/2, Hence
Q% and Q7 on C* Qﬁwmpl]%gg]emym}gnnthe collineation on
C* whose parametric equatwn is v ==yt w/2,

Thus in trapsforming Qﬁ ifito projectively distinet congruent
sets Qa it is sufﬁment*to replace Aiks bY Apmno.  Only sueh
sets QF will be o &med as arise from congruent QFs and
the 288 congruemt, 2's are distr ibuted, as noted earlier, into
36 congruent Qg’s Hence
(10) The Cmqwna, group Gs s i Zg determined by o general set O

18 nj}?m‘te and discontinuous. In 3y there is a manifold M,
tHeNinap of self-associated Qv's, which is tnvariant under

‘.\36‘3‘3 and upon which the infinite Gs .y appears as a finile
NN group fawe.  This fuss @5 the faclor group of an infinite

N\ wmpariant subgroup of Gs s which leaves each point of My
unallered,

The constitution of this infinite invariant subgroup of Gs,s
is determined in ('7JI (44) p. 377). The factor group fse i3
evidently the double tangent group. The manifold M; is
rational. For, it Q7 is represented by a point in 3;, the eighth
base point ¢y is ratiomally known from the involution 77
determined by Qg and thus Q’;, and the point on M; which
corresponds to the point on 2, is determined.
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The transformation from } to congrnent QF carries the
net of quadrics on QE into the net on Q¢ and the nodal
locus C®(y) of the one mnet into the nodal loens C°(y)
~of the other. Planc sections of each nodal locus corre-
spond to contacts of azygetic systems of contaet eubics of
the birationally equivalent planar gquartic. The 36 azygetic
systems of contacts are therefore represented on C®(y) itself

by first the plane sections, and second the sections by the\ D)

homaloidal web (z"ﬁ E* 1% which coincide with those of ‘e
web (m*n®of p?)®.  Hence though the number of s‘regular
homaloidal webs determined by QF is infinite £ {éut out
on C"(y) only 36 g%'s. The section of (*(y) b}r 'the p]ane
P34 corresponds to the section of the \g'uartlc by the
azygetic triad of double tangents, dss, ds dﬂg Under 4554
this triad corrcsponds to dys, dry. dje whlch therefore is also
azygetic. Thus the seven nodes dhg, N2 , d;s of the quartic
envelope E' attached \Wfdbﬁ@ﬁl;ﬁ}lal%%gtﬁq set.

The special charaeter of the Jelf-assnciated Q5 is reflected
in the fact that it poqsesses onIV a finite pumber of dis-
criminant eonditions. Thes.e are first the 28 of type ;=0
which expresses coms{@nce of g:, g;; and second the 35 of
type Oint = Omnop =0 which express that four points are
coplanar, For,4if’g;, - .-, g are coplanar, one quadric on
F must contam ’thiz plane as a factor and gm, ---, gp are
on the ple ne\determmed by the other factor. Also 6igge is
tmnsformc'}i by Agser into the condition that the quadric with
node ab'gs is OB g5, g2, o G5y Gor G WhHile Osgrg == 1280
is ‘manbformed into 84; ete. Thus further discriminant con-

\onq coalesee with the 63 mentioned.

45. Theta relations (p = 3). In the case p =3 with
28 odd functions &y == Jy{x) and 36 even functions yu
= ‘Jnmop = Pyt (2{-), we set (Cf 28 (l)y (6)) Sy (O) it and
also attach to each odd function 9y a constant ey Later the ¢'s
are replaced by the 63 constants ey, egi = émnop. LIS transi-
tion to eonstants ¢ leads to simpler results for such products
of constants ¢ as have a greater number of distinct factors.
A few relations of this type will suffice for the applications in 46.

Q.
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We begin therefore with products of like characteristic
P:: rather than with the theta sguares of charaecteristic zero.
Of the 32 products of this sort only 16 have factors of like
parity namely
kl) = Hi P, Pijk = Prmn == Jyk? Jz,u.-.s {3 j‘, 1,- veey G}.

These products behave like the 16 theta squares for p — 3
in the following respects: they are even; only four are Jind
arly independent (ef. 20 (9)); the first six vanish for wr= 0
and the last ten do not. Moreover under additiom bf the
half periods formed with indices 1,..., 6 then: Behavior is
the same as that of the theta squarcs ( P = 2‘) But these
properties just mentioned were sufficient \{o’ establish the
relations 30 1, ..., VI. From VI ther@\iﬁs} hen obtained

X 3

(A) Zo = Cerdn7 Casss CadeT Fn&iés =0 (”‘ =1, 2: 3)-

Let uy denote thewilﬂﬁaéqh&ﬁfy(bi@m in the variables
1y, 4, ;) 0f the developmeni‘éf Gy (u}; and let

(2) q‘y = O V.

In the relation mmﬂ@\' 1;0 that of 30 II namely

(3) ) ‘ga'i Coper Cusps Fo7 Fag == 0 (a = 1, ey 4)
let u be infféased by the half period Py. Then
o \ 8 Zg -+ Caser Cazes Fests a = 0.
fﬂhe‘lnmal terms then yield
\(‘B) 2 & Cuser Cases Costs Cop Yoz = 0 (e=1,..-, 4)-

We prove also the further relation conneecting these initial
terms,

©) It (Carssr Carssn Casoy Cases Casst Coasg Cet o Ut vas)m = 0
(e == 1, 2, 3).
An algebraic lemma is necessary (cf. %% p. 2566):
(4) If 2n Linear homogeneous functions ay, - -, zon of n vari-
ables satisfy un identical relution g, xi- . + G 22, =0,
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and if Ao+ oo FAdpri@en = 0 and B+ ...
vor o B+ Buya®nse — 0 then A;‘}.-’gl 4. +Aiﬂ,ﬂ’g.,l__i.1
= 0 and A Bi/g+ - +dn Byign =0,

For, the given identity states that the quadric

ey 2 L L 2 — 2 A R N
Q - .'?1'1'1 [ §n+1‘£n--;’-1 T (gn+2°{'-n—j—2+ _T"gmen) =0

in tite underlying space S, ; has anode at xp o == ... =@y, =0,

But ¢ in S,y has a node if @, as a guadric in &, withy
variablesay, -« 1, touchesthe Sy g, dy oy + o+ Apa a2l

The dual form of ¢ in S, is &/p+ .. —§—§i+1/gﬁ+;~% %
and it touches ¥ = A it Ai/g+ .- + dophga= 0.
Secondly the quadrie )

p §

I La s | 9 .. o ', \ 2
@ =g+ 0,9 = a0 Fan )

in 8—; has @44, -+, au, as a self-polar %-edron. The pair
O Sess an = mue 3 Sl hehapdlar Jo ¢ e
dral form of Q' is Sl oo+ Snim — a.ndl the apolavity
condlition of the pair, -— ::th:_'lf Tuti, — Brir Tntg, OF
A+ - + 4. L By —]:< S By o, is A, Bu’yl + .-
oo Ay Bufgn =0, p \H

Ou the transcendentad, side let the theta functions be of
the abelian type deriped from an algebraic curve F(z, y)
Wwith eontact ca.nor’xj@fidjoints @ (z, ) or, for p == 3B, 9y (#,y)
L7 =1, ..., 8 Then (cf.®® pp. 204-6; * pp. 271-2) for
proper choicg«}f”'the constant factors in the ¢y the initial
terms 2; ofthe odd functions &y satisfy the same linear
relation&j‘ﬁs'the . Moreover for the restricted range of
values\zti, #a, s Which arise from the normal integrals of
the first kind taken between limits @, y; 2,7 the odd theta
functions can be represented by

(5} Pop = k { Pes (2, ) - ¥ep (x!’ y’) P
If then
(6) We =% Moy Hes

there follows from (3) and (5) that
0 Se ok oo (0) (el =0 (@ =1, %)

N\
o
RE )

N
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If 2/, ¥ is chosen, first s0 that wf == 0, and sccond eqgual to
x, y then o

B Ko (1) =0 (e=:1,2,38);
8) Sy P OV =0 (=1, ..., 4).

Thus only two of the four functions w)* are linearly in.
dependent and according to (4)

(9) o+ K2 pesa {0) - 0 (@ == 1£23).

The same constants K. appear in (8) when the{indices 56
are replaced hy 45 or 46 whenece by virtue of t}Q\relatmn% (A)
the K.'s have values

(10 0 K2 = Pass (0) - pass (0) - e (0).

On setting these valoes in (8) and appl;mg {13, (2) the desired
relation € is obtained. vadenthf *the relatior ' expresses
the linear relatlon\‘muumﬁgblﬂﬂsem miembers of a contact
gt (cf.%7 pp. 244-5). \

We now replace the mnstantq ¢ in relations (4), (B), (O
by constants e from thﬁ& equations 28 (1), For this a lemma
from the finite ge%@etry is useful. If (¢ is a linear system
of half periods &, or their squared mull spaces, and if G is
enlarged bysddding a quadric Q. (« and = properly chosen
sets of substripts) then the quadries in the enlarged linear
syatem\a?e all of the form €., as x varies in &, including
also % = 0,

(ll If Py is syzygetic with G (i.e. on all the null-spaces of
\m}“ points of @) then Py ¢s on all or none of the quadrics
Qux; if Py 8 not syzygetic with & then Py is on just

half of the quadrics Que.

For if, in Qo+ Quz+P, =10, o« is fixed and » varies
over G and if Py is on every null space P, then it is on
both of Qo, Qux or on npeither, Henece 2 is on all or none
of the Qux according as it is on or not on Qg. In the second
case let P, he one of the points of @ whose null space is
not on Pi. Then P; is on just one of the pair Qu, Qax
and for variable ¢ all the quadrics divide into such pairs.
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The space (¢ for each of the three terms in {A} & Pi,
Pis, Pygs. The points Pi syzygetic with & are those in @,
the six points Py (4,5 =1,.-.,4), and the six further points
on the line joining these to Py, Any other point P is on
only half of the guadrics attached to the four factors and
the (g )1® factors out of each product in the sum and divides
out of the relation, The 15 points noted are to be tested
out on one factor of each product. Thus ¢y correspondst
10 (hesr which is not on Py, Pe, Pise, Fhase- Hence \the
first term yields ey, s, @uss, €use and the relafion.reads:

# .\ 2
(A!) €14 €og €1atn Ce3se = Cou €18 Cagse Frase T fa4 1o 3058 '91'2'\56 = 0.
For (B) the space G is FPrg, P, Pu; a{ad the &-yzygettc
space, an 83, containg the 15 points li’mm.JE’%r {8, j=1,.-.. 5}
These 15 points tested on the factpr tis of the ﬁrs‘o telm,
i.e.on @y, yield ¢ emw@mﬂb@mﬁw&y apglmafter factoring
ont eners, the relation becomes

(B) ) +6’15 Bay 8:\ 934 igrs tis = 0.

In (C) the space @ is %h\e plane of Py, Pis, Pss; its syzy-
getic space is the..plane with points Ppa, FPis, Fas, Prass.
Posss, Paass, Prs\Testing these on @ we find that

'\0.

() \\\ EE = eog 1458 (U7 nis)? = 0.

From\ these relations others are obtained by transformation
of €hg™ periods. Sueh transformations are generated by the
involfitions attached to the particular half periods, f; and
Zijra, the first of which amounts merely to a trans_position
of the indices. The validity of the transformed rclation is
due to the fact that its proof will exactly parallel that of
the original relation. Thus relation (A") is defined by the
Gopel ling, Py, Py, Psgrs. There is however a Gopel line
of type Pus, Pags, Psers which arises from the other by
the transformation Jy.s Js;. With reference to symmetry
in 8 indices there are then two types of relations (A") which

N

L\

A
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we denote by (A1) and (A-2). Furthermore with reference
to eventual application to P} and isotated index 8 there is
a second type included in (A-1) whose Giipel lne is Py,
Pii, P« These two are indicated by (A-1.1) and (A.1.2)
respectively. The three subiypes are:

. -3 .
(A1) 21 €14 £23 Prass Cossn == U;
3 "N

(A-L?) 35 015 02 Cs Caon = 05 £ \~>

P ™\
. i
(A.2.1}  ers enq €56 Gn 1 212k Cognn f2uss Crass Lroes = (b

0 'o‘.

For, the factors e and factors » permute under t@:n‘:fmmatwn
like the points 7> and gquadries 0 respeetivelyd)

The relation (B") involves the initial tergigtof four azygetic
odd thetas. That involving v, tey, © q.\\u\ iz transformed
into three new types by Zius, Imf,, Qiuss.  The respective
sets of four ave:

(1) vys, Ves, ey é]&““l“bl(m)y B, e, an
(3) Vigy Vg, Vas, 'bsr 7.; (4) Vagy Pyny Pasy Uag

The eorresponding rel; mons are
(B.1) Ed"‘ 15 faz 994}34 Cogas 1s = 0;

(B.2) 31+ e €18 \"14 323 €1848 Craas Vog = L1s €1y €sg Crsas Ciass Vs — O
(B 5) ~1+ @23\32348 @358 €1345 P1245 V1g =t fg3 €31 Cro E45 653 Uy = 0;
%éza €33 €2358 Ceang Caas Uis
(B. 4)
SN + Esi €12 Cy5 €12us C2aps Crass Uas = O

\'M]‘hé" isolation of index 8 yields 13 subtypes as follows:

(B-l-l) Prgy Vss,y Vasy Yiss (B-3-1) Vigy Vag, s, Vers
(B.1.2} w15, vss, Vss, Vis) (B.3.2) v14, vaa, V3s, Urs;
(B.1.3) w15, vy, tavs tis; (B.8.3) ws, vr1, tra, Vsss
(B.2.1) ¥as, a1, Via, Uus; (B.3.4) v1e, via, 14, Use;
(B.2.2) vag, a1, P12y Vas: (B.4.1) w15, vas, as, ag;
(B.2.3) trs, Ves, vary Tigs (B4.2) w15, vas, tar, Uars

(B.4.3) g, Yo, g, Vig-
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The relations (B.i.j) are derived by obvious permutations from
the relations (B.) above. The thirteen projective relations
derived from them in the next section are all distinet.
Similarly the relation (C) on the three pairs of odd functions
drawn from a Steiner complex yields threc types of relations:

N
3 .
(C.1) 27+ ean rasg (017 tae)V? == 0 @
P ] i 2% “\
{C.2) ik s g (s e} = 05 o \
, 0 . . « \/
(C.3) 35 2 ragse eusrs (Vs v20)'P E eya €5y (Uss 1) = Uy

From these the following subiypes arise by thg.pju:‘lﬁﬂtatiuns

indicated: i

(C1.1) w4z vis,s ar Vas, Y Vass (C.a.1) ?;,19'.\?;;', Uiy Veay Fra tazs

(C.1.2) vy vz, Ves Lor, Vag Uar} (0-212}%’%5 Uigy Uy Vga, Usa Py

(C.1.3) ves Tz V1 Ve Vs vses (GBIY vis v, s v, Vs v
WWdemf{{{ﬁﬁﬁY@"&W’au Usg Ligy Vpy Vase

%

46. Theta relations as“projective and Cremonian
relations on P? and @ In translating the theta relations
of the preceding si@io}n into projective relations certain
types of productsef the e; and the vy recur for whick the
following abbrexiations are employed:

.({j}g """" ) == & ik & Gk BT CKI * * *y

(1) &\ (@J e ki ) = ep e Ek Gl R
:‘,\’: 3 - vﬂkl ......... f— yﬁ 'Ua'k 'Ue'E Ujk ?-Fﬂ LRE vy
\\: Vijours e ov o = R VECRUL “rv 0t .

For applications to P2 the following notation is employed:

@) Dyn = (igk) equs; D; = e (jkimno);
5 = piges (123466708 §y = vy ey (Kimmno).

If then the relations (A.L1), (A.1.2), (A21) of 45 are
multiplied respeetively by (7;1234), (123; 4567) (4567) eq5 1,
(12; 3456) (34; 56), they become
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(A-l-l) D&s: Dl-ﬂ ipm: Dls? =+ D:m Dm? == 0,
(A.l.?) D]. -Dllib DlB? _l'__ Dg ])2{5 Dgﬁ; i D3 Dﬂ_ﬂ, 1)36? P U:
(A.2.1} Dy 2= Dagy Dygs Dras s =t Dygg Digs Dyyg Digg = 0,

The relation (A.1.1) then shows that the Dy are propor-
tional to the determinants formed from the codrdinates ef
seven points, P7, in the plane. The ratio of any twosterms
in the relation as written is a double ratio of .\tﬁ-]}e.\feur
tines from p; t0 pi, - -, p.. The terms of this relation arise
from the terms in 45(A) merely by inclusion ot exelusion
of certain factors so that the double ratios of four-lines
determined by P? are cxpressed in terms\pof the zero values
of the even thetas in the form AN

(3) = Cians Crass Cyssn Gesﬂs/f:sgsh:>2ass Crass Crysd.

The relation (A%{%{)Wscfbor\g&gig}tygzg% the expreafsion of .de—
gree two in the six pointsy, - - -, po whose vanishing requires
that the six be on a Ponic. With the invariants Dyr and
D; of P} thus defined\the relation (A.1.2) is a syzygy which
can be verified prdjéctively.

The relatiopss‘ﬂ.i.j) now become

(B—Ll) FQ‘Z'E Dssi-.El =0,
(B-l-g)"\igf"“_'})m? &5 = 0,
(Bl% ).7; D s Dy §is 2 Dyss & = 0,
,@33-1) 3 & Diyy Dygs D Dy &y ok Dygy Dyps & = 0,
“NB.2.2) 3 4 Digy Dogr Fuy = Dir Dygr 845 == 0,
(B.2.3) X & Disy Dyys o % Digr Ding Dy Dy b
== Dygr Dagr Ds Dy §13 = 0,
(B.3.1) X7 4 Disy Dags Dsgy Dygr Dy Dy &y
=Dy Dy Dy Dy Dy £y == 0,
(B.3.2) 211 & Dy Doy Dogy Dagy D7 51, 18 = 0,
(B.3.3) 3 & Das; Dasy Diss Dawy Ds Dy E15 == Dy Dy Ds s
+ Digs Dyyy Dosg Dise & = O»
(B.3.4) 25 -+ Dasg Dysy Daygz Dygy E15 4 Dy Esg == 0,
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(B.4.1) >4 Dyge Dhas Dias Dy Dy D)y
+ Eg + Dagy Dyag Dagg Dy & === 0,
(B.4.2) 37 -k Digy Doy Dagg Do D Eag
+ Disr Dogy Dygz Dy Dy Eor & Dygy Dysy Dyos & = 0,
{B.4.3) =7 & Dige Doz Daar Ess -+ 33 + Dyar Dass Dser £ = 0.

These are verified most easily by replacing the IFs and

Fs from (2) and removing the commen factor to obtain/)
’N\S ©

45(B.1), .-, (BA). s
The & are proportional to vx which in turn are proportional
to the initial terms in w,, ts, ug in the expansion ©f the odd
thetas. We have seen that these initial tertis) are them-
selves proportional to the 28 contact caqo@ga]. adjoints of
the curve of genus three, i. e., to the doubl Points of a quartic
envelope E* If then ey, 1y, uy are ‘inﬁerpreted as line co-
trdinates in a plane the & = 0 are fhe equations of seven
azygetic double points.,of s dEqrding, to (B-L1) these
seven points are P} and the .Z{*~i"s that attached to F¥ as
in 43. For the envelope is Tationally and uniquely known
when seven azygetic nqdé.:s are given, The 21 &; = 0 are
then the remaining n é.é'ﬁf F¢. They are related projectively
to the seven givennpodes and to each other as in (B.1.J).
A similar progédiire applied to the relations (C) yields:

(€.1.1) lf"\i\f}%. (Dy Dy & 5127 = 0,

(€.1.2) 8% Dy (Ep £ = 0,

(CAD) 3% Dy Dysy (Dy Dy By F)'™ = Dy (5 812 = 0,
(©21) 3k (G G = 0,

(C.2.2) 314 (Dy & &2 — 0,

(C.3.1) 31 Dy Dags (Ds 8us B £ (Foe 8P = 0,

(C.3.2) Eg + Digs Dyag (Do & &e ¥ £ Ds (Dg D7 §12 .334)1!2 = 0.
From these by rationalization many forms of the -equation

of E* are obtained but none which involve only the arbitrarily
given points of P2 We observe that the double point &y
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plays the role of a eontravariant of IZ of degree —4 in
piy p; and of degree —3 in the codrdinates of the remaining
points. Al of the theta relations (A), (B}, (C) have now been
translated into relations which are purely projective.

The important theorem that the varions Aronhold sets of
seven nodes ave congruent under Cremonn frans{ormation may
be ohserved in these velatlouns. Tt iy surficient to sce tliat
the quadratie transformation ¢ defined by the two Ftridngles,
5, %, & and Ey, &, §,, and by the fixed point &, Gl also
have the fixed point &. Under ¢ the peneil t‘:f‘~}irzes on &
becomes the pencil on &y in such wise MEy « = & &,
b ==§ &y, ¢ = & £, correspond respectivélydyto o = £y &,
Boos By By, /= By &y 1 in this pmje(:t}'\vir.v\‘ the line d = &, &
corresponds to the line d' .= &4 &, i 60 it the double ratios
(ab; cd) and (6’05 ¢'A') are equal, ,aij}if similar egual double
ratios exist for another pair of Fpoints, then & is a fixed
point. But {(ab; c“@\;ﬁbgﬂﬁﬁ:&;{?&)‘mié_i,qxpressed in terms of
the coordinates by

N 3

and from (B.2.1), i{i}t}}pears that
O\ DSI._IQ,-i : D12,23,4 : Dzs,:u,4
== #,Q;g; _Dal_;_ D; : sz;.; _Dl ad DQ : '_l:-l)ﬁl-t ]).?31 ‘?-—)3'

From rht:é\ similar proportion with like signs in which &
reI"l"@@*‘; %, the equality of the double ratics is apparent.
SBehottky (** p. 279; 5% effects a similar translation for the
~Jsoxtic of genus three, J¢, the locus of nodes of eubics on P
"For this the canonical contact adjoints &, &y are to be veplaced
by the 28 degenerate cubic adjoints of JU. e sets
Fia == ¢p0 (1’123)1'!2;
{4) G == (34567) (z1, Us; 51301 )y
-[Il = (1234567) (1j 23-15b7) 5T (1’3; 123;557)1:.‘3.
Then (C.1.1), (2.1}, (C.8.1),((.8.1) of 45 multipiied vespectively

by (»?2 123) (0m)?, (vs 1, (12;34) (1234;7) (vs; 1280
(B6T)" (1234, 567) (12;34) (1234; 7) e, sor (vs; 1207 ¥ield:
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(5) MAE Dy Fy =0 .

(6) M Fy Fa = 0,

(7) Gas = Fis oy Dhagy Digy = Fog By Dhgr Doy == 0,
) Hr o Faq A= Gy Gog Lhys Doy £ Gy Goa Dhgs Dagr == 0,

From () onc may infer that the Fy behaves like the line
joining py, p; and this is confirmed by (6). From (7) G

appears as the conie on py, -+, ps, pr. In {8) H;. Fy appears)

as n quartic with nodes at ps, pe, pr and simple pqi&ts? at
1, - -, py which has the line on ps, ps as a factor whenge H:,
the residual factor, is the cubic with node ag‘gr and on
p1, -+ 5. The varions relations, coupled Wifh the defini-
tions (4), give rise to a great variety of projective relations
among these various curves. From (4)“{10}18 there is derived
the identity in »:
{9 Fy Fry Gu G —Fae BiGy Gy = 0.
www.dbraulibrary.org.in

This is one of a number ofgéi’ﬁfilogous forms into which the
equation of the sextic ,J%.can be thrown. It has however
the extraneous factor Emao.

The projective refations embodied in (B.i.j) ean be tranus-
ferred at once ffom their expression above in &, &; into
identities inv,olﬁﬁér the degenerate cubics on P; by seiting

(10} oL Dy-Hi, o8y == Fy-Gy o == (va;mawen)].

AY
Thisfb‘jr\ational transformation from £* w0 J° is obtained
frafih the definitions (2) and (4) of the loei involved.
SUTuming to the self-associated ¢ in space, with the same
conventions as jn (1), we set

Dy = (igkD ey Dig = (iklimnop) (4 jklmnop);

(11) (6,4, =1, 8).

D = (ijklmnop)
If the two types of modular relations 45 (A.1),(.2) are

multiplied, the first by (1234;56) ¢, and then by (1234; 78) e,
the second by (12;3456) (8;123456)° (34;56) and then by
(12; 8456) (T;123456)* (34, 56), they are converted into

12
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(A1) Dhges Dosse -+ Dhaase Dhass = Dygas Ly =0 0,
(A1) Drais Dagzs == Dagrs Dyes o Diyazs Dhgse = 0,
(A.2) Ds,r = Daass Doses Drags Dises b Dvans Disas Dogn Dy = 0,
(A.2Y Ds.s = Duast Duags Doz Doagr -5 Dongy Dogns Dhass Phyzr == 0,

the duplication being due to ey = Cmnep.

The relation (A.1) shows that the [ behave like the"
determinants formed from the ecoordinates of eight, phints
g1, -+ g5 in space. The set (i is projectively dethied by
the double ratios formed from ihe ratio of twu terms in
a relation of this type. Since (3.1) and (A I) diise from
the same theta relation, the ratio of {w¢™terms in one is
the samc as that of the concspandmg teérms in the other

whence
Dhass Dysss ) Dogss Dhgse = Du‘gi):; o/ Doges Dhars.

This states that there is ay quddnc OB Gy, i W ith
generators ¢ gs andwigy. @braughmmrpmm're is » quadric on
with generatora s s andg, gs and therefore a pencil of
quadrics on Qg with genemtor qs gs. Since there must also
be & pencil on Qi ,Wl\h generator ¢s g;, there must be a net
on O3, i e, OF is'aself-associated sef. From the form of Da:
in (A.2) we infer that Dy . is that invariant of degree 4 in ¢x
and 2 in @& ., g¢ whose vanishing expresses that there
cxists 3 Guadric cone with vertex at go and on g, .-+, g
Ev ‘dénﬂ) the factors e, egm are the discriminant factors

of the set 5. Thus Dy = (7 kD) g vanishies and g, -, 4
aN, COplanar if ey = 03 then emnep = 0 and the remaining
\ Sour points are also coplanar. Furthermore I vanishes
it ¢y == 0, i.e., if the points ¢;, ¢; coincide in some dircetion.
If the qua:lrlc cone implied by the vanishing of 7y ; exists
for a self-associated (3, ¢ must coincide with gs and ey = 0.
But the function D; 4 of the cotrdinates of (% will also vanish
simply if any two of ¢, .-, gs coincide and doubly if any
one eoincides with ¢s. Thus the pecurence and multiplicity
of the factors e in (11) is accounted for, A wuseful relation is

(12) Dy; Dy = D°.
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I we set

E; = (i; jklmnop), then
(13) i Jhimnon)

D /D == DID;; = Ei/E;.

Thus the ratios of the eight E’s can be expressed in terms
of the D;; and D and 2 ;, I® can in furn be expressed in
terms of the Dy, But alse the 56 Ik ; ean be expressed
rationally in terms of the E...-, B, and D which are cou~),
nected by the relation o\

2 W

(14) D= E. B E.. N\

7 4 4
To one deduction we shall recur, namely ”‘\

(15) Dug Das Ds1 — Doy Dz D= 0.
R

This is in no sense an identity. For: oven gy, -, ¢ it I8
a sextic equation satisfied by theseighth base point gs.

Tn order to obtain PrbERMBRISGEE rom the identities
among the linear terms of ig* odd thetas, let

P(123) =A128) (s,
. P(1223456)  A(1; 23466)* (23456) (v vuszesse)
16 P12 42560 = (1234)*(1234; B67) (567) (viom vserss)™,
_P(132§<:?72j == (13 234567)°(234567)* v1;24567-

The the -‘a,i;:éiétions identify these with the P-surfaces deter-
mined ¥y g, -+, gz. For if 45 (C1), (C.2), (C.3) are multi-
plied Yespectively by e, (123; 78) (¥, (1234; B) (visanis)"
2356) (1456) (136) (246) (ve;1204)'% they become

(CI) .DQ?,?S P(l 78) i _Dlsfs P(?TB) i DIQ?S P(378) = 0:
(C.2) P(145) P(285) - P(245) P(135) + P(346) P(125) = 0,

(0.3 + Dagse Dhass F(136) P(246)
| . ) =+ Disse Duszs P(236) P(ldﬁ) - P(62 12349) = 0.
Then (C.1) shows that P{jk) behaves like the plane on
&, gj, qu and this is confirmed by (C.2) while (C.3) shows

12*
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that P(%j kimn) behaves like the gquadrie cone with vertex
at ¢ and on gy, oo, g, This 15 to be expecied since the
funetions ¢; as defined in (2) ave the eanonicul contaet ad-
joints of the guartic envelope £, Then the combination
(e has simple zoeros at the contacts of a coutact cubie
of 774 of the zystem which maps £ into the wvodal loeus
(" {y) (cf. 44), and these are the zevos on C°(y) of the planr-
seetion containing the bisecants g7 g5, gragn. g gn olg &”’\{y}
Similarly the cone PE5kima) contains the five lllxot anis
Gii, - gign as well as the cubic enrve on theReidix points
which cuts €% () at the two paints on the E'@if;mt Jo ity 1

u C NNY e
13 E1050 (? s et L €as trgr (W st T ST e (g tpnts? = 0

s meltiplicd by {1284)*(1234567)(1 2:—3-1,,{{6‘?) (121055) e e an 15>
it beeomes
DJ)1U T‘l 36'3 -L :)t)‘ ' = "1“[)!5 {)] By !)11 _:J‘]: ) ]Pf.f:’n-l-ﬁ

1y - db‘"a“l‘b‘i"y . P2 13456) P340,

This expresses the ('ubic P—‘%'Lll'f"li"t'_' with nodes at g, -+,
and on s, ge, ¢ 11% ’bﬂmx of simpler F-surfaces, Transfor-
mation by A s, ai\m\“ that the relation is an identity through-
ot the entne ca'pace and not merely on £% (y) as 118 derivation
might mmh\ The transform of thiz last relation by Juw
would fumiish an expression for the remaining P-sarface,
P(lsﬁ){"\"- 7%}, By setting y = ¢y in (.1} the diseriminant
cou{h\mn which expresses that a cubic surface \\11:11 nodes
At Wiy gy 1S 0N g5, oe-, gs turns out to be Ef k5 Fl 1 ES D
\ ~m1d thus coincides m’rh a eoplanar condition.
1l the relation 45(B") is multiplicd by (12345) (5; 1254}
{00517 1t becomes
Dagis P125) P(1835) P(145) P(234)
(B.1) = Digas .P(l?:")} E{?:—BE)) E(‘M:')) P{134)
—+ Dyogs P(13D) £2(285) P(345) P(124)
+ Dhags P(145) P(245) P(345) £(123) = 0.

it may be proved that this projective relation is an identity
throughout the space. Thus the various relations (B) yield
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a variety ol projective relations whick may be developed by
similar methods.
We have seen that .1')’;'3 and Q? arc associated and there-
tore satisiy a bilinear identity, We prove that
{17y The ddenfical bilinear relation between fhe associated
P2 and % 4 ~
M &g i jhlmne) == 0. O\
v/ |

'\
\

Let 5 be the planc g gey and & the line p, p: di\the |
assumed velation, 37 2; &- (¢ = 0. The relation theideduces
to X' Ay Dy P(156) =20, But from (C.1) 37 DygdPA156) == 0.
Henee Ay Ih,- s Ay Dhy = Phasse : Dissg which f\cuording 0 (2)
and (11) is satisfied by the values 4 give fn (17). |

Tt thus appears that the theta relatighs) contain implieitly
the eeometric properties of the ﬁgurps;: L7 and S and their |
related loci of genus tl},l;g:@..dt}‘\g}ggﬁ,}ﬁ‘lﬁbp_%gjgiﬂlanipulmed they
turnish valuable material suppleentary to the usmal analytic
gesetry, N

47. Schottky's parafetric equation of Cayley's
dianode surface. ~E‘or’ those values of the variables
M1, Ha, 1y of the 1'.11&[} functions of genus three for which
one of the odd q){‘éﬁ-'en functions of the first order, say the
even function '.%ui-'anishes, certain of the four term ldentitics |
reduce to. thH¥ee term identities subject to the underlying .
relation $GH =: 0, These simpler identities are used by :
Schottk¥® to establish a parametrie representation for Cayley’s
dia@mﬁdﬁ cextic snrface (ef. 44). He writes appavently In
i.&_‘}m"zmce of the previons work of Cayley aud Rohn. The
major results are reproduced here. -

According te the same argument by which 45 (4) was |
dednced from 30 VI there follows from 30 1T the theorcm
that the products of the two odd thetas in each of four
pairs of a Steiner complex are lLnearly related. IF oy 18 !
one of the eight odd thetas in this relation and w is inereased K
by the half peviod I%; then ; is converted into -3 and, for U i
stieh that 9(w) -~ 0, this term disappears. In this way It
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appears that when & = 0 the following three triads are
linearly related:

(@) Pus  Humsy Fus Pagin, Fes Feorai
(1) (D) S1oes Fusss, Fruas Faapu, e Fis)
() s Fras. Pan Trmw, Fan Faens.

The index 8 remains isolated so that there are six wiole
typical triads. "These give rise however fo relations‘h‘hiéh
later are obvious deductions from the three ,rzlven ~\

Let now

Pip == Yyjin Fis 9 js Frs; Py = !T“B- Bin Gy

(2) Pz’ﬁcl — Hﬁ‘ x')zmnsfb‘zs Fins 3318; P; \ J] J?s

(I == Syg Bgg + o+ By 4,5, \v 1 ey T
Then according to (Ia) the 35 functmn% Fijp. are such that
any three of the t}p&vdﬁbraﬁ%h?‘ﬂr%s re linearly related,
ATl 35 can therefore be lmeal}v expre%ed in ferms of a preperly
chosen set of four, e, g. l’;d4, Piss, Prag, Praa. If such a set
of four, or any four lineatly independent combinations of them,
be taken as homogenteGus codrdinates y of a point y in S,
then Py represefits a planc. Since all the Py with fixed
index 7 can bé gxpressed linearly in terms of threc of them,
say Py, PgiyPu, they all pass through a point ¢ in Si.
Hence R,;L-”\“— 0 represents a plane on the points g, ¢, 9~
of a Q‘"k Since the codrdinates y are funetions of two para-
metgrq (w1, u, us subject to % == Q) the point y runs over
\ },mfaee 7. .

If the relation (1D) is multiplied by P15 - - - s F3a, it takes
the form a Pss = b Pias Pos—+ ¢ Puss Ps.ia. Hence Fsg 9
a quadric with node at ¢; and on ¢y, ---, g;. Due to the
similar relation in which the index 7 replaces 4, Ps s is also
on g, i.e P5e is the quadric cone with node at g; and
Ol G, -+, @1, . If the relation (le) is multiplied by
3?8 1948 gy P9, it heeomes & Pragy = b Py P4 D‘J—{"Pl‘?:[. By 5.
Hence Piasy == 0 is a cubic surface with nodes at 1, -+ 0y Y4
on gs and ¢r, and, by virtne of the symmetry in its deﬁnition
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{et, (2))., on gs also. Finally from the four term relation
connecting Hus d1s, For vy, Par a2, s Frs by multiplication
with 1‘)‘?3 v 3?,3 Fos 3'?3 there arises a Py = bG,6Gh 11 ¢GaeGhr o
+d (32,6 Gz 5. Hence Pr is a quartic surface with triple
point at ¢, double points at ¢, .-, ¢s and by symmetry
at g; as well. Thus the functions defined in (2) represent

the P-surfaces determined by QF (cf. 44 (4)). .
Clertain identical relations of the sixth order t‘oll‘m{ ,\i'lﬁ**.\
mediately from (2). These are of four types: « \

(a) l’l" 1 2.8 Pdl_P21P32P13 = 0: '\ 7
y () Ps g Prog Pser— Dy, s Pias Pusey =00
@) (©) P P45¥‘ Py — Pusgr Pragr — 9\ )

(dy B, — e Py =0. '\
These are not identities in . The} must therefore be equa-
tions of the surface Tw\y,xgigbtgﬁﬁjrp 3 Q5. One may
see from one or another of t,he equatmns év) that 7' contains
the 21 lines g¢;¢; and the.seVen cubic curves on six points
of @, and hence mist, usum:lde with Cayley’s dianode surface
(cf. 44). Tt will betdbserved that (3a) is the same equation
as 46 (15) if in the, latter gsis replaced by y whereas T does
not contain gg, (The individual term P1 2 Py g P31 represents
a sextic surfm:e with triple points at Qi of the form

o Tﬁ}(&n Aoty Ay - s Ag) B2 g 4i ) dx =0,

Unﬁéf I 15 Py Py y Py interchanges with Py P2 Py while
T Lhang‘ea sign if B, 4y, Ay, 4s are unaltered {after removal
of the factor which contains the P-surfaces of 7'%). Hence
for proper choice of signs in the guadric cones £ j,

e Py Pa1—Po1 Pag Prs== 2a T,
PiaPy P+ Po1 PyaPra=2B (e Ao+ a1 A1t 4o)
+2 2 epn Ai Aj Ak,

and the latter surface is om gs. Thus the ambiguity is due
to the indetermination of sign in the gquadric cone Dy ;.
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Schottky defines an  L-surface to be 1 quartie surface
with nodes at . He observes the degencrate L-sntfaces
(cf. 44 (4)) L o
@ Ly = FPr=H &g Ly = % : _PJ-‘.:- = " 9y

' Lire = Prjie - Praop =+ 1 - Fjex,

and remarks that the linear system (%) of L-surfaces Ccuts
ont on T the curves defined Uy the liuear ageregate of t’ml‘a
squares of which seven are linearly independent when, S0,
e notes that the 21 prodoety L;; and the 35 pr n(hwtx Lijns
will have as double curves vespectively the o!\}qm guartic
curve foy of interseetion of 74 and P, cafgd the olliptic
ctbic curve Eys of intersection of Dy and Bhnep. 1o these
we shonld add the 7 elliptic loci fi wWilich consist of the
directions at ¢; on the surface.J%, Tﬁiﬂ‘ 33 curves then play
the role of a c'nn]uo'a‘re set wnder ‘wogular Cremona rans-
tormation of (7. ‘\mebilhﬂlﬁ}%ﬁ-?}l&fgﬁth the 28 Jcurves
nf (g. (cf. 44 (5)), £ and 1,,& are exceptional curves on T
since cach is defined by =" L,, e, 4 halt perlod for which
G {uw)=10. For, it T‘%...i\lcal from {4) that if a theta square
vanishes for ome \ﬂ‘lt‘\f‘ half periods, the corresponding
degenerate  L-sugface contains the corresponding F-enrve,
The memoig (ohtaing, along with the conventional way
(cf. 44 (8) @{&étting up the system of L-smfaces, a definition
of the i @imwn J1° from the proof that L-surfaces on y pass
thmuoh'\; and the following eonstruction of 7%5: planes on
s r‘/ !‘u‘r out on the elliptic guartic curve €4 thmuOh them
‘md Q. the same involution as js cut out on ' by planes
fi the tangent to ('* at the eighth base poiut . Though
the fixed points, gz and ¥ of 7% are determined the trans-
tormation is not discussed in the light of the Cremona theory.
It appears first as a Cremona transformation in ap article
of 8. Kantor®. We give finally a brief proof of Schottky's
thicorem:
(8) If Bisam opeﬂg chosen L-ezu,r‘(cce and Ay, Ay, ds ave quadiics
of the net on Q) then T" = 4 K — s B—y where g5, 43
ave polymomials of degrees 4,6 in- Ay, Ay, A4,.
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In dp: 4y ds = A:p:1 a particular elliptic eurve ¢ on ()
is determined by A, . On C* change the original parameter
u 10 v = —wg. The parameter of g is then » = 0 ang
the pairs of £’ on C* are v4-+' = 0. Since these pairs
are cut out on by a pencil B— Q;ﬁ == 0 then ¢ = 5/43 is
an elliptie fnunetion on C* with zeres -k ¢ and double pole at
= e, o= ap(y) ~—b. If we set B = (B-—b4a then
o) = B'id3. Also 7%/ 45 has double zeros at the half pemﬁ\
points and six-fold pole at the origin and is therefore }tisJ\@))g.
Ineorporating this constant with 72 then 7% = 4 B*—gvB—g.
This cxpression for 7% is valid along the genepdleurve (4
and therefore throughout the space. The go{g3 are the loci
of equianharmonic and harmenic curves C{respectively. It
the curves O are projected from gy into Amet of cubics on P
with parameiers 2 ;g : 1 then the 1maarlantb &, T of the net,
which are the 4,, g5 of a paltwul*u dtve, are of degrees 4, 6
m i H’ L= dy: 4y Aﬁle dbraLd1b1 ary.org.in

With reference to the m.1ppmg given In the next section
we add seme thesrems: .

(8) Each of the 63 degéhdrate L-surfaces, Ly in (1), meels T
i i curve of ord -&24: made up of the double elliptic eurve En
of Lo and ofNhe 12 curves F (cf. 44 (5)) which meet B
The 12 poigldsy Haws cut out on £y are siz pairs of a hessian
fmf{apmm(eme (o = u -+ 0/2) on En.

For, w@\ohserve first that two curves are understood to
meet @Nj; (i == 1, ..., 7) only when they have the same
direefion at g,. Then E,, the oo directions at g, on the triple
pafut of Lis at g1, has a direction in common with Fjs and
.X‘Jl ( =2, ---, 7). The six pairs of directions on Fis, Fiu
are in a he%mn correspondence (** pp. 170-2). The situation
thus existing with respect to L, passes over under regular
fransformation to a congrucnt set @7 into a similar situation
with respect to L,,. Hence Ly and Qi are similarly related.
(T) The points of T awe in (2,1) correspondence with the pairs

of points on o planar quartic curve fr; and the two paErs
on f* which correspond lop one point of T are complementary
puirs on « line section of [
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If o, o are two arbitrary peints of 7 then (ef. * p, 231)
{)-('&‘!il—l—'ﬁ.z‘g-’[—;ﬂ) = (0, and conversely, it #(u) == 0, the two
points o, 2y are determined for which e o w4 w4 k.
Qinee ${— ) then vanishes also, there is a paiv ol points oy, 2,
such that — e == uf:“ —&—u::‘ +%. Then

wa 4 2 4 s o} gf 4 49k 0. N\
(14 £ i 4] '\:\
Iu the Hnear series defined by this congrmence (_ct‘\.ZS#)’ two
points ave arbitrary and the series must be thesequonical g,
Thus complementary paivs &, oy and @y, a1y ,<_1§I~ h line define
values + 2 for which $ () == 0 and t]wref'ﬁ;\'e a point on T
and eonversely. \

The geemetric construction of this c(i}}fxpuhdemm is obvious
on the nodal locus (*°(y). A (.f'{{'}ju\u point P of 718 con-
tained on four nedal guadrics, Wath nodes on (fly) which
correspond to the fouy .QBE%&%;E%H : okié',‘?nse"'ti““ of f*. The

o 5 - y
generators of these four donés with nodes N cul out op !
fnvolutions w—+u = @My c= (o, +je)/2; ij = 0, 1].

The product of two Of these is also the product of the other

twe and is a hess ia@ﬁurrespondence # == -+ /2 which sends

gs nto F.  'This ‘hessian correspondence is effected by the

harmaonie p’e{"s'p'ectivit.y with the opposite edges of the fetra-

hedron f-\_‘;g{-“as lines of fixed points. Thus

(8) Ungedy C* om QO the tetrahedron o if nodes of wodad quadries on
OX and the tetrahedron of fixed points of T'% on O, wre desmir.

148. The generalized Kummer surface (p = 3). The
(theta manifold M2 in S5 (e¢f. 32), the map of pairs of points

—+ in a parallelotop by the theta squares, as a generalized
Kummer surface, has a set of 64 four-fold points, determined
by the half periods, » =0, w:= Py, u:= Pyy. There is
also a set of 64 Sy’s which toueh B3 aleng an A7, these
being the S3's obtained by equating to zero a particular one
of the 64 ¥, (u)'s. We denote them by M+~ ($w). The 63
points and 64 Mi7s ave transitively permuted by the balf
period group s of My so that each has the same projective
velation w0 M;' as any other in its set.
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Since the valnes - w for which a particalar .., say (.
is zero can be spread over the points of Cayley's dianode
sextic surface T with triple points at Q3 and then the linear
system defined by the remaining theta squares (cf. 47 (1)) is
represented on 1" by the linear system of L-surfaces, there
follows that
(1} The M, () alonyg which M2 is tangent to the S defined

by &% (1) == 0 is the mup of Cayley's dinnode sextic gy

Sace T acith triple pornds ai O by its lincar systha) of

adjoint guartic L-surnfaces. ) N

Thus two F-surfaces meet in a 16-ie curve‘with four-
fold points at )%, and snch curves meet T in 18¥6—7.4.3 or
12 variable points which correspoud to theyntersections of
MS? by a variable S;. The transcendent: i’ definition of s (9
is replaced in this way by a purelynAlyébraic definition.

To the 28 half periods for whieh (u) vanishes there
correspond on 7' the “gﬁwmigﬁniﬁfgpyﬁgﬁ‘jﬁb (44 (). An
L-surface which contains apomt of Fy outside Q5 contains
the whole curve whenceFy maps into one of the four-fold
points, » = Py, of ;1_ﬁ§3§6n M5 (%) and the individual points
of Fj; map into direétlons about Py. We prove that
(2} The 28 four-fokd points of M, w= Py, on ME () wrr

double poindni M A

The mu]tipili«jit.y of w = F, on Mt is 12— if an Si
on P de e}ﬁzﬁned by two 8;'s in the S of Ma? (&) meets JIas
in ¢ poits outside F;,. Two L-surfaces on £y, meet again
in.:{ﬁurve FF2A8% .. T, A plane 7 oon [y meets
ek’ L-surface again in a carve 4 (12)" and the Lwo Curves 4
meet in 7 poiuts outside Fy,. Hence I' meets = in 15 points
of which 6 arc at p; or ps, 7 ave not on Fiy, and two are
on Fi,. Then 7 which contains F, meets I' 10 610
~—2.3.3—5.3.4--2 = 10 = ¢ points outside F, and
%, and Py, is a double point of 5" ().

There is on 7. in addition to the 28 rational curves Fi
a set of 63 elliptic curves Ew, Ej, Lis which are simple
cmrves on T and double on the respective degenerate L-sur-
faces. Thus Eyuse is the intersection of the plane P(123)
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and the eubie surface P{1234% - .- 7%, 1t is mapyped by L-sur-
faces into a normal elhptu* sexlic curve i1 the &, common to
the 8,'s determined by & (1) and Flum (uh. Vence (cf. 47 (6))
(3) The S eontaoning ME(Y i ek Dy the Si's ditermined
by the remaining thete squaves tnoa el of 63 Sy's each
of which is tangent o W) alomy o normal ellipfic
sectic twrpe B chich confains 12 of the 28 points IU DR
MY, the 12 being compoxed of stz peivs noa oheﬁum
correspondence on RS, O
The Veronese surface Vi is the map of the @lmm by the
linear system (209 of all comniex (™71, the tadratic system
built from the lines of & net. The exidtdice among the
L-surfaces of the quadldm system bu\lt from the qoadries
Ao, A;. 4 of the net on O khm\x e
(4) The map of the spuce Ny of Q iy the system of Leswr-
Sfaces is @ quartic cone M QO) i Sy with vertex at O, the
map oj s » u}{&)v}\vagb{llmlmrfy}bpgﬂnﬂof on 0 is o Vero-
nese Va. To the % * ads of pomts of 1" on elliptic
quartics C* there m}w&,pom:’ on ALY () trieds of points on
generators of Jfa {s()) The M. (9) is the complete inler-
seetion af 41{5\6()) and the cubic spread tn S,

@ TP = 4B gy B—gy = 0
(ef. 4‘7\6«)))
The(W: (0) itselt is, like V4, the complete intersection of
six{guhdrics.
\'f The M5° (9) contains a system of oo ? space sexties of genus

four of the special type cut ont on a quadric cone by a eubic

surface, For any guadrie, say 4,, of the net on Q7 cuts T
in a envve (1%, ..., 7°)® which is mapped by L-surfaces into
a sextie curve on M” (&#). The 12-ic is ou the L-surfaces;
Ao Ag, Ay Ay, A5 whence its map in Sy is a space curve which
is cut out in its space by the quadric 45 . 47 — {4, 4,)* = 0,
a cone with vertex at () and the cubic surface 4 B*—g. B-—ga = 0.
Bpace sexties of this type are discussed in 51I.

49. Irrational and rational invariants of the planar
quartic. It js well known that a plane section of the
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enveloping cone of a cubie surface, (hz}* = 0, from a point ¢
on it is a general quartie curve. The equation of this cone is

(1) (Ao = 3[thy) () T—A[(hy*(ha)] - [(ha] = 0.

Lot the quartic come, (Ada)* = 0, be cut by the plane,
(Bx) = 0, In a qu(nti(, curve, {gz)* .= Q. -An invariant Dis
degree & of {gx)* == 0 is a symbolic product [(gg¢'¢") | EQJH
the corresponding invariant of the section by (S) ot )t
is a symbolic produet J[(AA'4"8) of degree & inhé co-
efficients .4 and of degree 4%/3 in A and thus of deurees 27,
2k, 4173 in the coefficients %, in y, and insg\respectively.
Sinee the section by a p‘lrtlcnlcu planc 8, gt on g 18 not
material. the xymbolic prodnet must haye &grextraneom factor
(8% and an essential invariantive ¥aefor of degree 24 in
the coefficients /it and of order 7&‘3 in y, i.e
(2) The ineariants of &wwdﬂr%ﬁbrﬂ’mmguw?rm tir are equal
to covariants of o cubic emjftce of degree 2k and order
20/3 mudtiplied by 2 where L is an undetermined constand
independent of k. NN
Such # covariant\\o'f (iz)* has the symbelic form,
TIRER WY (B®y) -, with 4F/3 determinant factors.
In Cremona’s hexahedml form of the cubie SI]I‘f*ice (cf. 40
(4), (5)) with bi\"b ariables «, ---, fand surface g*+ -+ + /%=
the va ]&b{gm are: subject to two linearrelations, a — ot f= 0
and o3> .- +7f = 0. According to (’lebsch’* principle
of tpanstercnce the quaternary symbolic determinants are then
bii\bf' replaced by senary determinants (%7’ 1w, On
cxpanding the symbolic form and noting that the coefficients /
are now numerical there results:
(3) An invariant of degree k of the ternary quartic is equal
to A% times ¢ covariant of the Cremona herahedral cubic
surface of degree 4%/3 in a, - .. f and of degrec 2k/3

o, -, fo
Since the surface is mapped by cubic curves on F for.
which the &, ..., 7 are linear in py, -+ -, ps, and the a, -+ f

are linear in py, .- ., ps and of degree 3 in a variable pomt P

QY
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and since a section of the enveloping cone from g, the map of p;,
is projective to the envelope £ with nodes at 7%, there follows:
(4) An mvarvient of degree T oof the quartic envelope £* with
nodes af Pi is W% times an expression of degree 2k in cach
of the points of P whirh vawishes 253 times for each
cotncidence af bwo poods. O
The essential factors may be determined for cerlain, an-
variants of the guartic which involve speeial poqmom oFthe
double tangents. Thus the diseriminant of degwe 97 in the
coefficients of £* should be of degree b4 in the edordinates
of cach point of 7. The diseriminant Lu:,ﬁ:l\ B, (cl. 43) is

of degree two in each of pu, .-, p; addN@ay is linear in
1) .3 1
each of pn, po, pa. Henee 4 = d5.. - - ¢ \\f}.x Sog v oo U

of degree H4 In each point, Sinee dug ,\ s Oz and Oyagy, -« -, Orare
each vanish simply for the coincttfpﬁce of py, j, 4 vanishes
to the order 20 for this (,omc;dcnre Since the normal order
(ef. (4)) 15 18, the \ﬁlsurmm}aﬁ% Yoo is mmplied in A.

Again the guartic cur verhas an unduhtima when the con-
tacts of a double taqwcnt coineide, and FA* has the dudl
singularity. This, givés rise to two types of condition on P
{a} the line j_g-.g\bouchcs the eonic on py. -- ., pr; (b) a cubie
of the net haswh cusp at p;.  In case (a) the conie is an
S 2 pl, ﬁ:’) Letting . = p,+ 4p,, the discriminant in A
is an f (g3, 3, - - -5 p2). The product of the 21 conditions (a)
is aq B ey 235, In (b) the cusp locus p. of cubies on
P 37, ps is desired.  This is, on the cubic surface, the

.\pahdhohc curve cut out by the hessian. The hessian ig an

NF @2 ) or, m terms of 2oan f(pt, oo pb, pB. The
product of the seven conditions (b) is an f(pf .-, 3%
Henee the undulation condition of the guartic is an inv ariant
of degree 60. By a similar argument Morley*® finds that.
att invariant of degree 54 vanishes if the qgunartie eurve
containg inseribed five-lines,

In order to locate the extraneous factor 2% in (4) an equation
of B* itself frec of extraneous factors is needed. This is
a form (cf.*®) symmetric in P of degrees 4 and 10 in #
and p; respectively, say
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6} = fit ") = 0.

Tt may be characterized more completely by giving its

beliavior for variable g,.

(8) The form E* in (D), for given 3 and Py and variable P
is o rational cnrve of ovder 10 with four-fold points at Py
wied five-fold tongent 4. The line v and rational 104
are the fransforms vespectively of o rational quintic meﬂ;q' Q“
with Lineay paramelers 3 and nodes af Q.«, associated\ o I{,,
and s pevspective conic I, by the qz*miz( C?mncl?m Trans-
Formation with dowble Fepoints at e, Ps. .wf\‘

For, E* =0 in (B) is the locus of the didt} base point,
p7, of peneils of cubies on £ which touC}\\zf On mappiﬂg
the plane by cubic curves on £y mto\d cnbic surface (7
7 becomes a twisted cubic ¥® and ‘p~ becomes the further
intersection with ('* of a tangentelime of &% The locns of
these tangent lines g ‘ﬁlﬂl‘ai‘ﬁ@féﬁﬁﬁl‘é grhich touehes €F
along N and meets € in alhtional space sextic. The total
intergecticn is the map fiim the plane of a 12-iec with four-
told points at Py frozrﬁx\\-'hich 7* must facter leaving the
rational 10-ie. ’I‘lﬁ\\ﬁanafmnmtion mentioned sends this
10-ie into a conilF and y into the rational guintic Q,;, with
nodes at . Me pen('ﬂa of cubies on 5 which touch y
hecome peucﬁE on ) which touch ¢,. But W.Stahl* has
proved fat the peneil of adjoint cubics on two points of
a Iatwnal quintic is on the point of intersection of the two
'“*Tlf'%pondmw tangents of the conic per spechve t0 the qummc
kLeiaw K is the perspective conic of ¢, and touches @ at
five points. .

The invariants of the quartic emrelope E* in (b) are of
degree 37 in the coefficients. Thus the one of lowest degree 3
is of degrec 30 in py, ---, p5. According to (4) its eﬁgctive
factor is of degree 6. If ps, ---, pr are on a eonic (an)’
then E* becomes (a4)? - (py4)® (cf. *%) and the first invariant
has a zero of the second order. When formed for E* in (3)
It must contain the factor 0% and similarly the factors
d23, - .., d7s. Hence
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1

(7) dAn énvariant of degree 3L of U quavtic encelope E* 4 (D)
conlaing an extraneous frclor O?i, S, i of degree 241 in
the covrdinates of P and an essential factor of degree 61 in
the coivdinates of Pi.

The invariants thus far cousidered have been rational and
integral. They take the same values to within a Ffactor gf
proportionality ¢ when formed for any one of the 288, sét3
congruent to £7. Such invariants can be formed ,Df\ﬁ}m-
metrizing simpler 4rrafional invariants which areq permuted
under congruent transformation among the nmmhﬁf‘é"ﬂf 4 eon-
jugate set. An irrational invariant of % phider congruent
transformation should be of the same degpée’ in each point
in order that the ratio of any two inx&\conjugate set. may
be independent of factors of proportioality in the codrdinates
of individual points. It should al®be a projcctive invariant
of the seven points and therefore be made up of deter-
minants 7k . Its%e\gﬁtbradl@@ah%gop with respect to P37,
should be such thag it is mw.:-,tm med under congruent frans-
formation, to within agfactor depending only on the trans-
formation, into an invariant of the same degree and behayior
with respect to_thescongruent Q3. The simplest polynomial
in the codrdinates of P} which satisfies these requirements
is one of dgg¥ee 3 in each point which, when any point i3
I'Egarded\«@}"variable, becomes a cubic eurve on the other
six, i, ‘&il\‘hith vanishes af least once for every coincidence dy. -
The: ‘foilcrwmg are examples of such irrational covariants

thh their values in terms of @, -.., /3 @, ---, f and de
Y. 40 3), (8), (9), (11); also™™ 11 (60)):
8[681|1461| '342| 562! 5347|1217 367] = —(cf+ds) (¢ +1)
. = [ef+1;
) 8 = Lf—]f;i'a)(tfl-f)
' 1367] = 2ds (¢4 f)

Fach of these has thé proper degree in p; and vanishes at
least ouce for any coincidence. Recalling that the 63 dis-
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criminant conditions on P oare permuted like the points in
the finite geometry, we observe that, apart from the 21 coin-
eideuces, ench of these contains the seven discriminant con-
ditious which eorrespond to the points on a Gipel plane
(vf. 28), and that the three Gipel planes so determined have
in common a null line whereas the three irvational invariants
are linearly related. Hence .
(9 There are 13D drrational Goped invarionts which salighy
@ set of 315 three ferm velations wiich cm*rfesjm?zd,?'*J@:\ﬁm
finite geometry tv the sefs of three Gipel planes( o el
of the 815 wull lines. By virfue of these wdlfhons the
Gipel dnvariunits can be expressed in texmd Bf 10 which
are linenrly independené. The 15 {I‘l'8'<%3:&j'€{,‘t fo o set of
63 cnbic relations which correspond 5 the poinds @ the
finite geometry or to the disc-ra'm?lna:ﬁjf* conditions of Fi.
By permutation of the points along- the first two types (8)
contribute 30 of the @@ﬁhhlﬁ@@ﬁ&ﬁﬁ-@ﬂg%e last contributes
15 more. Tt may be proved, fek. 7TIL pp. 382-3) that

N

8 4127 1245] 230]

y
W0 (d— g ST+ Gt d)b+o) = lad. bel.
From this by fh&-parallel substitutions 35 (4) (with & change
of sign in g/~ £, d» under odd permutation) the remaining
90 GopelNhwariants are obtained. The whole set i3 obvionsly
wade gphof the B terms dp a, - v, o f subject to one reiation,
andgtlie terms «F(cf) subject to five relations (c£. loc. cit.).
£ n” giscriminant condition such as dy == Aoy be isolated,
fifteen of the (opel invariants such as [cf] =« 2ds (e4-F)
contain it as a factor. These arc expressible in terms of
the six, d, a, -+-, d, f, themselves subject to the one linear
relation, d; (a—+ .-- 4- f) = 0, but also to the one cubic
velation df (¢’ -~ ... -+ 7% = 0. There must be therefore
one such eubic relation for each diseriminant condition. The
relations may then be denominated

By == 0, Ry = Bongy = 0 G d,--=L 8).

1%

i
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In the notation introdnced in (B) and (9} for the (wépel
invariants the three term relations read as follows:

() [ef]  HlefHl A lr— =0,

by lefl Hlbel 5 lud] SRR
(1) ey tod, belHlad—] +1he-t ) < 0, "\
\ () lad, bel=the, adl--{ef] -0, \\\

/N

(8) lud, bel1be, ef]-lef, ad] = 0.
£y lab, delFibe, ef1+lea, fdl "'i:"{j
\\

In patientar the 15 Gipel invariants whiehMontain a given
diseriminant condition satisfy 15 of th@s{@ velations; ¢. g, tor
Arg the fifteen 191,1t1m1~1 are thoxg, 'N T1h. Furthermore
the cubic relation ds (a1 —Lj ) may be rewritten as

(12) & (o + 1) (0 YUy l’aﬂ*hra\w TR - f) (et Y] = 0

stnee ¢ - = 0 The three opel invariants in each
product may be cl;gnﬁaterized by the fact that two in the
same product do *hpt, while two from different products do,
ocenr in a reldtisn (11).
The beagng-of the cubic relations is given by the theorem:
(13) If a&'}*e? of 135 constanis g con be expressed by means
e velations (11} in ferms of 1D constanis & that are
‘hneaﬂy independent, and if the comstants h sutisfy the
. V83 cubic relations {9) then the constants g are the Gipel

\‘: wvariants defined by o set of points PP oor by any sct
congruent to Pi.

If for example the 1D constants gy of the form de{a-+ b)
associated with the diseriminani condition A;s and subjeet
to the 15 relations (L1 h) are known, and if furthermore they
satisfy the cubic relation Ris==di(a’ -+ ... -F /%) == 0 then
they are the linear invaviants of the sextic line penci] from
a point p; to Points @, - .-, ps, and the double ratios in this
pencil ean be expressed by properly chosen ratios of two of
these fifteen coustants, as in [aB)/{¢cd]. If the four points
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puy -, pa are selected at a base, and if the 15 constants gy
subject to the eubic relation B,y = 0 are given then the
position of the sextic line peneil gy py, -+, py pr is determined.
It also the 15 coustants g subjeet to Iy = 0 are given,
the position of the sextic line pencil . py, Paps, -+ Pan
iz determined and the position of the points ps, ye, pr i8¢
also determined. If again the 15 constants gss subject o
Rss == (0 are given, the position of the sextic line péueil
Pabs; P3P, Papa, -, Papr 18 determined and three, condi-
tions must be satisfied in order that ps ps, Ps Pes }_;rgp~ may
be on the points ps, ps, pr previonsly determmeﬁ\\We prove
that these conditions are respectively Rpasaw0, Ry = 0,
Rss = 0. Thus the cubic relations play.the double role of
first ensurfng the existence of the &P!Q)tf line penecils and
second ensuring their united positioh\in P It is sufficient
to prove the case for ps. If pryjey ps Is the reference tri-
angle and p, the uni™poiditradibleny,oigg.in: y : v, the double
ratios on vertices pi, pe, pu,‘fd‘ipectively are:

124111850 4 \_/.lslmtl 185) [167] _ —lae, b}
12a| 1134 \z\ Mg 120| (134 '1b7| 1fd, ael
(14 1125012840 Cou  Ae 125112341267 [bd. ac]
T N241(28B0C 2 Ags|124] [235: '2m| lef, bdl’
A x| awi34] 295 167, _ e/, el
|1%§ 034y Aw 135 Tlde, ¢f]

,llhe\ ﬁndl expressions of these double ratios are obtained
Serdm a list of formulae eonjugate to (10). From the identity
(y/u) (ujz) (x/y) = 1 there follows:

(18) [ae, be) (bd, acllcf, abl-+1df, aellef, bdl [de, ef1=

a enbic relation on the constants g which is obviously s satisfled
if these are the (fopel invariants of 2 P;. The six factors
in (15) all contain the discriminant cendition Sez {doubly, 1. e,
once more than it normally occurs); any one of the first three

is coupled with any one of the second three in a relation {11e)
13
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or (11f); and no two in the same product arve coupled in
a relation {11). Henece (15) must be g = 0 in a form like
that of By =0 in (12).

The 15 coefficients « of the quavtic spread L' in & ou
which the theta manifold 3" is a locns of double points
satisfy a system of cubie relations of the type (9] {(cl. 33(5), [6))\
whence
(16) The 10 coefficients o« of the quartic spread LY i 33 (*5)

can be expressed linearly with wucnerical mrjﬁm’nis i
terms of the QGipel envariants of £ and rwuwsw'y The
leading voefficient « s ilxdf the (;r)j!(f Q‘&ti‘n‘(mf [ad)
whose valne e terms of the zero value G the even ihetas
s given in 28(9). N

For « is invaviant under a ¢, ,« con an}ma an invariant .
generated by the involutions attached‘to the points {400, &5 LJ
of a Gopel plane (33(10)). The'.l.lans:}tmn from the charac-
teristic to the basis,pldiulibrefeorgdn(33 (3)) by setting
(17) {11t 1114 :;?Q"{-P]:S Py Pozy Prg Py D)

.i'"x\
The points of the ‘\%{»pel plane in the basiz notation are then
Pis, By, Piy, Py Prars, Pags, Pagrs and these corvespond (o
the seven di;scﬁnfinaut factors of {ad]. With « = [ad] the
correspondence befween Gopel invariants and linear forms in
the coefficiénts « is set up by effecting on the linear forms
the opéatmns of the modular colliveation group 33(9) and
on. t,h? Gopel invariants the corvresponding opewtwnb of 47 2.
\"Ii; is perhaps unuecessary to note‘that the 1, ---, 7 notation
in 33 is not related to that in 75

If P} is taken in the canonical form as above with
Do, Pe, Pre==2:y:u, z:f:u, v:g:u the Gopel invariants all
contain the factor »* and are of effective degree 7 in the
coordinates x, y, z, ¢, », s, u of the point in I which is the
map of PP, Hence
(18) The Cremona group Gq. in 2 i3 mapped by the hnear

system of order seven determined by the Gipel invariants
upon o collineation group G in 8,, which is identical with
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the madular group 33(9). The space Iy 15 mapped upon
a modular manifold Ms defined by a sel of 63 cubic
relniions.
Kvery invariant of the collineation gronp @ is a rational
invariant of the quartic envelope E* unless it vanishes on Ms.
For example the sum of the squares of the (iopel invariants
yields the first invariant of the guartie which in terms of \

the fifteen e«'s js, to within a mumerieal factor, \\“
QO
(19) Ba?+ 2>+ 3l ﬁ‘;\\g
';(/
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CHAPTER V

GEOMETRIC ASPECTS OF THE ABELIAN MODULAR FUNUTIONS
OF GENUS FOUR.
Q"
In the present chapter a variety of geometrie situations
are presented which have ag a common foundation an (Lluve”in\l(,
eurve @, of genus fowr, As a rule the absolute pwgevtlve
invariants of the figures discussed can be cxprcq:«'d either
ratiopally or irrationally in terms of the b}&itmnal moduli
of 7, and therefore are deseribed as modulisdunctions. They
alen are related in a transcendental wayy which in ecertain
cases is deseribed,; to the meduli of the'\xt:heta functions defined
by ;. Most of the topics are digeatssed with reference to
sets of points and their hehavmr under regular Cremona
rransformation,  Awwnatabebuldpparstarg iwould therefore be
a study of the set P¥ indiHe plane. This brings to light
a cevtaln special sextie of genus four whose properties are
wmore easily appmhen&ed by comparison with those of the
general .. For \{}m reason we hegin with a diseussion of
a biratiovally gtueral plane sextic curve of genus four, first
observed by Gaporali (3 pp. 858-62), whose siguificance was
pointed ommody Wirtinger (7 7 pp. 115-7).
50.\Wi“ftinger's plane sextic curve of genus four.
AQ'\ starting point consider the general algebraic form
N0y (o) (00) (D) =
\n which « is a ternary variable and ¢, ¢ are digredient
binary variables. The form depends upon 6.2.2—1 = 23
constants or upon 23—8—3—3 = 9 absolute projective
eonstants. It is convenient to interpret £, + as a point on
a gquadric 4 in space with generators #, », and at times 0
replace the bilinear combinations of 7, 4,; %, 7 by the co-
drdinates y of a point in S5 (cf. 17 (6); in which ease (1)
hecomes
(1.1 (e} (yy) == 0.
198
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The latter form depends upon 23—8—15 == (0 absolute
coustants so that the transition from (1.1} to (1) amounts
to the choice in S; of a quadric 4 with isolated generators.

When ¢ in (1) is fixed and ¢ varies the conic (1) in &,
runs through a peneil with four base points ¢. For one of
these points x the equation (1) is satisfied for given ¢ and
‘any ¢ whenee the form factors into forms linear respectively
in ¢ and * and Q

@ Fr= e @R BN B8) = 0. O

Thus for fixed = and variable ¢ the pencil of conicg,.f{ 1')" has
base poiuts p,, ---, p; on the quartic enrve f* .If\fbr fixed ¢
the conic meets #* in gy, -+ +. ¢ then for this 2 and variable ¢
the peneil (1) i% on g, ---, ;. Hence 0V
(8} The form (1) determines on the qua.-gttﬁ& Curve f1oa linear
series gt of quadrupels p (for fixed €)) vind o linear sevies gt
of quadrupels ¢, ( for fived 1), which are residual in the g%
cd out on f* by f:o}?i}f‘le’f'dlmﬁ%%EW P8 Buch residual g's
on f* determine a form (ANct. 14 (8)).
Let ¢, * be a point ongdNor which the conic (1) is a pair
of lines (§2)-(¥'x) on,£)" Then

N\
(4) (o o a”>2,(fs¢hf;ffe-) @) (B B H B =0

and £, 7 is o the section of the quadric 4 by a cubic
surface. Theljoint # is then a diagomal point, Doth of
a quadrupelp. and of a quadrupel gy, and its locus W, the
sextic_wi Caporali and Wirtinger, is birationally equivalent
to.4ha space sextic ewrve (4). In order to prove that the
S}a(?e sextic iz general consider the line equation of the
conie (1)

(5) (e 5 (he) (B e} (BB = 0,

or the more gencral form

(6.1) (ee &) (wa' &) (hr) BT e) (86 (81 = 0.

For given ¥, ¥, (b.1) is the equation on 4 of a quadric
section which meets (4) in 12 points ?, ¢. For ea(':h of
these points the envelope (5) is ¢(¥2)* == 0 where 2 is the

N
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point of W which covresponds to for on (4). Hence (5.1)

vanishes at the 12 points x where £, & cut Wand the points

on A correspond to these 12 points o When § = & these

12 become six coincident pairs amd tie seetion (5) of 4 i

by a contact guadric of ihe space sextie (4).  Conversely

given a general space sextic of genus four, 4. on a quadric A,

one of its 25H contact systems of quadries cuts A in a

system of curves (3) which contajus a fernavy pmanmt‘@l £

quadratically (cf. 14). The reciprocal quadratic tenml\ form
breaks up inte the product of {4) and (1}; ‘md &) in turn
determines &,. Hence '\;

(6) The Wirtinger sextic W, the locus of, Wi vertices of the
diagonal  triangles of the quadr upe?a\@f’ a ! (or ifs resi-
dual gi*) on a general fernary qqu i move fY, 48 o i
rationally general Gy It has Dobrolinte projective constals
and iz differenticted from ﬂm projectively general plune
sextic af geﬂm\‘,jwrﬁbl{alﬂw}i‘wyadmg mnstants) by the fact
that tfs line sections -"H.Ef “Yhe contacts of ils canonicdl spuce
sextic with tme of ﬂw 250 systems of contact guadrics (¥

The two g¥s, o?r&,ldual to each other iu the caponical
series of W, wh@ “on (4) are cut out by the two systems
of generators ©f, A, are, on W, the vertices of the diagonal
triangles of ig¥ and g!* respeetively.

The peheil of conies (1) for fixed ¢ and variable !
dete’ ines a planar guadratic involution of pairs =, z such
ﬂiﬂf!?\("xx) (e2’) (b2} (8¢ =0 for every { whence

~© (a) (&' ) (as!) (' o) (B)) BR) = O

If » is at a diagonal point of pr, an F-point of the invo-

lution, z' is any point of the opposite diagonal line and the

conic (7) in variables 2’ is a pair of lines whence

(8) The cquation of W, of degree 6 in the coefficients of (1
is the discriminant of the comic (T) in variables «

This furnishes an equation of W in the form of a symmetric
three-row determinant whose eclements are conies. Such
a determinant isolates the system of contact quartic adjoints
of W associated with the half period determined by the
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contact system (6) of &,. The planar quartic f£* is also
a two-row determinant which isolates the residual gf's. But
also the space sextic &y in (4) iz expressed as a symmetrie
three-row determinant whose elements are bilinear forms in
f, v and thereby the conftact system (D) appears. If in this
latter determinant the bilinear forms are replaced by linear
forms in y as in {1.1) the symmetric three-row determinant
is the equation of a four-nodal cubic surface due to Cayley {8
Evidently there is one such Cayley surface on &, for_dach
contaet system of quadrics. These were noticed by P.dRoth®,
the gist of whose article follows in quite different’{ovm.
The form (1.1) determines for every @ in S A plane in S
which envelopes a surface S, and for everyghyn 5 a conic
in & which belongs to a web K. The Class of § is four
since the conics of R determined by yyi, meet in four points.
The locus of points y for which the gonic of B has a node

at  is wwrwr.d bra'Ldi:ljra"ry.org.ln
(9 (ee' ') () (x’ﬁy’)'(}’”y) = 0.

For any node z there isdh @nerai one such nodal conic
sinee («z) (ez') (v y) vaniShes identically in /. If # is a plane
on y which determine$ ‘this conic with node at x then

10)  (ad &pl¥ " n) () (@) (@"2) = 0.

The web R contains 4 line sguares, (¥ )%, the four common
tangents of {h¢ pencil of line eonics apolar to E. At each
of their &% intersections &; there is a pencil in £ with node
at & wliehce the point » in (10) is indeterminate and the web of
cubfe eurves (10) for variable ¢ is on the six points &;. Hence
theVeubic surface (9) is a Cayley eubic surface, (®, the map
of the plane by the system (10), with four nodes at which
the directions correspond to points on &, and containing the
edges of the nodal tetrahedron, the points of an edge corre-
sponding to directions about £. The three lines of the
diagonal triangle of the four lincs & make up a cubic of the
web (10) corresponding to the tritangent plane 7 of C*. _

A point #' in (1.1) determines a plane 7 in S5 which cuts €®
in the map from the plane of the cubic eurve (109,
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(e’ &) 'y ¥ (e (i) (o) (1) 2 0,
which has a node at a’. For, the polar line of »f is

(we' ") (ry'y" ’”)(“J](“J)((Cj: IRCOET S

(}’?" d w) (rxa“ } ({x )({r” " [\(c e ) . (rz e’ ){_((. .'J.':J-"I3 Shra | N

Hence the envelope S, the map of the plane by the webR
is the guartic surface of Steiner (Rommn swface) 1e{‘1m\ocal

to the Cayley eubic surface, C% N\

It » is on C%, the conic {ez)’(yy) == U ix ;l’l’glé pair &,
¥ on o and O
(11) (e’ (r) 7' y) = O

is a conie proportional to (z§)°, The, qut , &7 ape partners
in the involutorial quadratic con?l'\mm (letenmned hy the
apolar pencil of B, Hence (ae' 8”17 4) (¥ 4) = 0 is a quadric
which euts C* in a rational Hextic curve, th{ map of the
conic (8x)° = Owiny. dﬂfﬂmﬁ’"aﬁ'ﬁ’ﬂ‘g‘ﬁ in R and is, say
(¢ (/') = 0, thisghadric is the polar quadric of ¥
as to €% If (B2)? is&\Jine pair, the guadric cuts €* in the
two cubic curves,itjn\ C* which map the lines of the pair.
1# the lines of the.pair coincide at & as in (11), the quadrie (11}
touches C* alobg the cubic curve on (* which is the map
of & Mobebver (11) is & quadric cone whose planes corre-
SlJOHﬂ".{ii.\(l.l) to points z on £ For, if & is a1 22" the
qua\t@ﬂc locus of planes (1.1) is

AN Hex) 24 (az) (2 a) 4 22 (@) (ry) = O

) and the locus of points y for which the two planes of this
cone coincide is

[l (o 2y — (am) (') (ea) (')} ) (o)
= (e2) (& 2) (' ZTF) ) () = (2T P y) '))72

= (aa'5) "9)/2.
Hence (e’ 8Py (7 v

(12) If y is & point of C* the conic (a 2)° (v 4} is  line pair E, &
The points of etther line ave mapped Ly (1.1) wpon the
planes of a guadric cone with vertex at y which touches CF
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along the cubic cwrve on C® which is the map by (10) of
the line. The planes of fhese fwo cones are the planes
of C% on y.  The equations of the cones are given by (11)
Jor E=§, E=¥".

Into this mapping in 83 of point x in S, upon the point
of (% by (10) and npon the tangent plane at y by (1. Dlet,
the quadric 4 with generators 7, 7 be inserted so that the
plane (y y) becomes the plane section (bz) (81} of 4 and the’)
form (1.1} veverts to (1). Thes 4 euts C* in the,épﬁce
sextic (#, whose equation on 4 is (4) which is theﬂm‘aft from
S, of the loens of nodes of conies of B determigq&bypointg
on ¢4, i.e. of W, Moreover 4 as an envelopehias in common
with (¥ {(or its reciprocal, S) the planesyof an octavic
carve 0% of elass 8 and genus 3 which dthe map from S
of points of the quartic curve /™ Tlré: pencils of planes on
generators ¢ or ¢ have four planes, I’ common with (7 or (%
and thus the two res&&u@iﬁ&ﬁﬁi@p&@lﬂn 0% Aszrups
over a line & in & its coptesponding point y runs over
a eubic curve K*(§) on € Wwhich euts A and therefore &,
in the points which carfespond to the points of & on TI;
also the correspondi gf plane (tangent to C®at y) runs over
the planes of a quadric cone ¢ (§) with vertex ' on % and
tangent to (aléng K*° (i. e. a eontact cone of G4y) with four
planes in comim’ou with 4 and % which correspond to the
four Doil\m';\xifhere § meets % The cone Q(£) with vertex
at 3/, a8 the enveloping cone of A from ¢, will touch along
th.\éo'inmon generators if & is a double tangent of f Thep
@8 will have two points of contact with A4 and the pencil
}etermined by (&) and A will contain a pair of planes 4, %
Since (%) touches ¢, on A at 6 points the planes #, %'
also touch ¢, at 6 points and are a pair of tritangent planes
of G,. Rince also the six edges of the nodal tetrahedron
of O3 cut A each in two points which are the map of the
same point §; on the plane, there follows:

(13) The birationally gemeral planc sextic W of genns fouwr
has the projective peculiarity (fouwr conditions) that it
siz nodes are the six vertices of a four line. The wmap
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of the plawe by the canonsead wdyoinds of Woas one of the
200 four-nodal Cuyley cuhie suyfuces (0% on 4y, the map
of W, The planes common to € wnd the quadric A on
Gy deforaine an the pline the gquartio oneee 4 and ats
vesidual Vs, The enceloping cone af 3 from o point
mie it breals wp ondo b guddeie cones whicl are contget
rones of Gy deterwdned Iy lwes Eoof Ny (11 Rie
ptadrie vone Hms defermined Dy o donbie fange nf\“"eff‘
and the quadeic A, detersrine w pened whicl coiiding one
of the 28 pairs of frifungent plaows in fhe, rm} et syetem

af guadries. O
W. P. Milne*® obtains these and other nwnltx by synthetie
methods.  We guote one theorem: a\J

(14) The o® cubic crrves r?f-fh;—:'-m3'?.1,{’(?;’\?'55 the swe contacts of
the quadrics of a contaet systohpdf G meet i fonr points,

the wodes of a Cayley cubid sirface on .
For, these ('un«@m«aﬂbmhbwnwmt%ﬁ( ) of lines § in 5
each of which meets thewfour lines & We observe also
that the cones Q(E),’are"nn the nodes of * whence the

linear system o)

(13) \\(ua B Gy = 0

ix the linegs \‘.‘s\'btl‘fﬂ (=" of guadrics on the four nodes each
of \\fhlghj‘ﬂleet.s ¢" in the map of a eonic (Bz)". Supple-
nent g further results contained in the memoirs cited, the
fol}m\ind theorems may be mentioned:
(lf} The nodnl tetrahedrva of the 20D Cayley cibic surfaces
\}“ on Gy arve the only tetrahedra whose edges are bisccants
of Gy.

For, it T is suck a tetrahedron with planes yo, 41, ¥er ¥
the linear system (oo®) of Cayley surfaces with nodes at the
vertices of 7' cuts &, in a 45, or a g7 if one Cayley surface
is on (4. Since (;4 is on five linearly independent cubic
surfaces, all cubie snrfaces cut it in a complete gi¢ and the
complete involution obtained by fixing the 12 points on the
cdges of T is a g°. If » were 3 this involution would he
the canonical involution of plane sections whereas a trihedral
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of T cuts 7, in the 12 points and the G points on the edges

of the trihedral which is not a plane section. Henee r=2

and there is a Cayley cubic on (7, with nodal tetrahedron 7.

(17) A vegqular cubic Cremona transformation with F-points
af the nodes of C* transforms G, indo the Wesextic which
apwears as the general plane section of a sextic swfnic
with four four-fold points

N
For, it 7'is chosen as above and 4 =2,y —-}—Z‘aijyz.yj:;-\‘- 1)

the transformation has the form gy = 1. The trapstorm

of C® is a plane and the transform of 4 is N

o 2 3 RV \
Daiyl kv byt vk (e v NS0,

The latter is the general scxtic surface 'eif\\'tt‘s type with six
absolute constants to which the planggshiributes three more.
The section of the surface by the(pline has nodes at the
vertices of a four line and Is tlg.e:H-"-se.xtig: birationally equi-
valent to @,. www‘dbre‘l}fljliarary.orgln
(18) The 28 pairs of tritanyent planes of Gy are pairvs of an
snvolutorial cubic (}J{e;nmm- transformation for whicl the
planes of T are Fplanes. These pairs cut the edges of T
in 28 pairs o f& involution defined Ty the pair of wodes
on the edgeydnd the pair of poiis of Gy on the edge.
The 28 lines on the respective pairs are in a cubit compler.
With T&i.n’h”zl as above, the system of contact suadries
i3 in ;L‘Mzi1' system of the form Shiyiy =0, and _wit.h 4
deter;;:*;{fmes a system (o0%) whose apolar met has the form

N
&\ o \ . ;- JE—
\‘; e i gy = 0 (g, +t a,) = 0.

The pairs of planes in the system (o) are the pairs z}pulm-
to thiz net and are pairs of the Cremona tnvolation 7; 4 = (i
for which the lines joining pairs are known to lie in a cubie
complex. The 28 pairs of tritangent planes are in the s:\'steTn
(%% (cf.(18)). Let = be any plane which cuts ¢, in six
points on the conic wA. It corresponds in the plane to an
adjoint cubic ¢ of 7 which cuts T in the corresponding six
points. On ¢ the inscribed four-line with vertices at the

Q"
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nodes of W determines six points for which Yy = /2.
Henee the six points of ¥ on ¢ are on a conic {#2)° =- 0 which
maps into the intersection of C* by B8 = (e’ (yy) (Y'y) = 0.
Then £ and A meet = in the same conic wd and there is
in th? peneil of B and A a pair of planes «, 7. Since
A, s, Boare in oa pencil, there (ollows that, given any, ads
joint cubw ¢ of W, there exists aunother ¢ such that

N

2\

(e W= e E - (ER (8 & N

N

where (§2) is the four line. Then the t-lng&nt‘s‘tﬁ"c ¢ at &y
are in the involution containing the pair uf\t‘mgenm of W
and the pair of lines &, &/,

IO and 5 are two Cayley cubicpobil (44, & member of
their pen(-ﬂ on a point of 4 unm.ai}n.%' A as a factor, i, e.
k(s == st4. Then €7 and :(";i' cut the plane 7 in the
same ecubie curve grp and the 'Il{)d',dl“t(:‘tl’:ljledrﬂ of (.'f, ¢35 ent
in two inscribed MWP’H&%@W‘E’”"Y orgify eases are possible
aeeording ag these two ~ipm-lmez~> m e correspond to the
same or to different &alf periods on ¢,. HKither of these
caxes can ocenr.  HOY given 7, ¢», and two inscribed four-
lines of ¢ belohg\mg to the same or to different k)::tema
on oy, two tefuihedra Ty, Ty can be found (each in o' w av~)
which cut g the inseribed four lines. For cach Ty a €7
is umquf{l'\detcnmued mth nodal tetrahedron 7% and plane
-t=c‘t10\\r1;. The ¢ and ¢ with common curve ¢ meet in
a fmrhes cmve Gy,

\Tv»o half periods of 7, assoeiated with surfaces 0y . s deter-

\ nine a third, associated with (3§, in either the syzygetic or

the azygetic way. Two eases are possible:

(/‘!:_3 + k‘_}s Cg — T f'l_, 1-"1:2 021 —1-‘ ,Iif;_; CY;;} = T ;.':l.,
S+ ke O = roy A, L Cs 4 4 (3 wd,

L 3 4 -
Crtle (8 = a5, d; my OF +me (5 = A,

In the first easc the three surfaces ave not in a pencil, whereas
in the second case they are in a pencil with =4. If the first
case occurs the two inseribed four lines must belong to the
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same half period of e on @y, Otherwise on ¢y two half
periods would be isolated but not the third—a lack of symmetry
not to be expected. Iresumably then the second case oceurs
when the nodal tetrahedra of Of, .1*23, CF meet 7 in inscribed
four lines of ¢34, one from each of the three systems. With
respect to the first case we prove
(20} Given fwo tetrakedra Ty, Ts in general position theve wyg
Sfour conics which touch their eight faces. The plane 7€ of)
any one of these condcs is oud by Ty, Ty in two fomiﬁ?@e‘s
of the same system inscribed in a cubic curve &3 The
two Cayley cubics, cx, O3 . with nodal ietrqf@d&‘a 1,7
respectively and plane section ¢y meet agaé&‘i?'én a Gy

For, two four-lines of the same system inseribed in ¢, touch
a conic and if two four-lines touch a¢'donic, the two are
inscribed in a cubic ¢o and belong toxthe same system. Thus
it is necessary only to find a conic ‘which tonches the faces
of Iy, T, the dual Qi@h@m@p;}gfoﬁg@gng a quadric cone
on eight points.

Certain particular cases Of the W-sextic are important.
As we have seen the J¥<gextic in the plane is determined by
the spaece figure of é}\lim::h’ic A and & Cayley eubie surface €%,
and on W there i8\an isolated half period or contact system.
The half period§’are associated with the discriminant factors
of the curve.’When oune is isolated the others are either
syzygetie §PAzygetic with respect to'it. In the present case &y
can acgﬁiré a node in one of two ways: either A touches C°
or passes through a node of €% If A touches €%, G, has
d“wode and the curve of class 8 common to A and €* has
}doub]e plane whence in & both W and J* have nodes._
I# A passes through a mode of €'* the corresponding line &
factors out of W which then is a quintic: with nodes at the
points %, The curve f* however has no singularity. .

The particular case whieh is treated more completely in
the next section is that for which 4 is a quadric cone with
vertex y° and coincident sets £, = of generators. It is charac-
terized hy the vanishing of one of the 136 even thetas for
the zero argument. Retaining C* as the map of the plane

Q"
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the netavie locus of planes common to L and »° is the map
from the plane of a conic b Lt (™) In the system B,
It £ is a parameter on this conie and ¢ @ pavameter for the
generators of A then, for ¢ =+ on . the plane {eel® {y) =0
on #° contains two generators © whereas cacl generator =
is on four planes of € determined by fowr points @ on fs
Thus there is a relation .
(21) {ef) (a2)* - 0 R N
N
which expresses that generator ¢ of /1 is on t.lzc,j_?h‘}ne of €7
determined by ¢ = » on k. The quadric .t nollenger divides
the system £ bilinearly but rather into anNsolated eonie %
and a system quadratic in ¢ which cuts\prin the quadratic
system (21) of fowr-points, Originallyd #generator of 4 was
on four planes and three points o6 the mups respectively
of a quadrupe! on f* and its Adlugonal tr langle on 1. The
W-gsextie still lennmwwmlluhauiwlw onglies at the vertices ot
a four-line but f* is now ’t,he doubly cmeled conie B, i
a hyperelliptic ecurve of geml:, three with 8§ branch pomts
(et) (a' O (na)® =¢ON These determine on €7 the cight
common tangent plames of C* and . Hence
(22) The locus of Yehe diagonal fricmgles of w quadrativ systein
of fourgpdisits on a ronic k is o Wesertic whase erinonical
.S‘prt-tfq;\~@fve Gy iy on o guadeic cone.
As mlih 8, runs over the line & two planes ol the

qmdr‘iu cone Q(¥) with vertex at ¢ on €% correspond 0
le w0 points where ¥ meets /.. If these two poidts are
\bra.nch points of (21), the two planes are tangent planes of
the cone A, and as before there is a pair of tritangent planes
in the peneil of Q&) and A, i e
(23) The lines & which determine as in (18) the 28 tritangen!
plane pairs in the contact system of Gy on a quadric (one
are the lines joining paire of the 8 branch points on b
of the corvespondence (21),
A general form of type {(21) in digredient variables f, ?
with 14 constants and 8 absolute constants is just snfficient
to determine the entire geometric appavatus. For if the
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normeonic & in Sy is selected und a parameter ¢ is installed
upon it, the form determines three linearly independent four
points on &k and thercby, to within muitiples of %, three
conics which with & define the system R. On mapping &,
by the system & upon the planes of €'*, W maps upon Gy
and the guadric cone 4 on ¢, is determnined. ~

In the next section we find a birationally equivalent form
of this &y,—namely, the locus of the ninth node of a plam\
sextie with eight nodes given at Pg,, a 9-ie eurve with trlple
points at P{. When the individual points of P fhicy given,
this 9-ic earve can be mapped upon &, in such'gvise that
all of the 120 {ritangent planea are rationally¥XEnown.

51. The planar set, %, and the space sextic of
genus four on a quadric cone, Ify {he F-points of the
35 types of Cremona transformation }mt.ed in 6 (10), inclnding
the projectivity, are selceted in all possible ways from 2 set
Pg, the lidl]‘aTUl“mdth,ﬂ.awgﬁﬁd}b§ag§ oty BP40 sets Qi con-
gruent to Py. But, as with, P2 the symmetric type £i; of
order 17 with eight 6-fold i pomtb produces a set €)% which
is pmJecmxc to Pg FOI the same method as was used
with P7 (cf. 43) sl \q ‘that if (F is congruent to Fi on
a cubic K vwith Jsanonical elliptic parameter » for which
P —uw ; Uy ﬂlen (s is ple&CtlYe to the set —uy, - — s
on K and t'}\sretme to Pi itself. If the projective sets Py
and € o es‘npe:po;ed E, becomes an involution I; discovered
by Bexgii.? Hence there are only 8640 prejectively distinet
sets. Q,s ‘congtuent in some order to P‘s, which are permuted by
f‘rcmom transformation according to a group of order 818640,
M The group gs» has the order 8!8640.2 and in it the
projectivity and J'¢ constitnte an mvanant #. The P-curves
of the set P are paired under 7Y and this pairing is in-
variant under the larger gromp. The 120 pairs are

(hee == P(1)°. P(1°2% ... 838
(1\1 Owa = P(l?)l-P(l 23%... 82)5;
’ Opg =+ P ...5)02 P(L.-. DB T*BT
O == P(128 ... 8. P(2'3 .- )"

14
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these having respectively 8, 28, b6, 28 coujugates under
.. They constitute the 120 degenerate sexties with nodes
at 5. In the notation 1,2, .-, & 9, 0 the indices 9,0
are isolated. The 120 diseriminant conditions on Py are
also of fowr types under (7s,, namely:

() 012, dras, Gusmine, G2 OF \
’ ) Az Aisses Arses, diss ’\\\
O

these representing respectively 28, bt, 28, 8 {_:()tl,j}}q;‘:r"t.fzs whose
vanishing implies that two points evineideg three are on
a line, six on a conic, and seven on the fabic with node at
the eighth. With each of these (cf. 6 (193)ytheve ix associated
one of a conjugate set of genemto:\n?‘ iy way dya, Fiage,
Zisa0, f1o- N

In the basis notation for p = 4 With subseripts 1, 2., 9,0
there are 136 c»em\,ﬂmﬁb,ﬁm;ﬁww,mgﬂnnt type & and 126
of type Histm = Hnopgi 120°0dd functions of type Sy and
255 half periods of tygzms By, Pyg. If the cven function J
be isolated, the hali{periods divide into 120 which satisfy
Yoy = 0 and @ ‘which do not. In the finite geometry
an E-gnadric ig™mot on 120 points and the sub-group of the
modular grouf’which leaves it unaltered is generated by the
involutiongaftached as in 22 (10) to these 120 points which
ave of tyves Py, Piaso, Praso, Fis with reference to G 0D
the Juttees 1,..., 8. If then we identify the discriminant
pq?lditions (2) with the points of the finite space not on @,
““We pairs of Freurves (1) with the odd guadries @y aud the
Cremona transformations 7 above with the involutions attached
{0 the corresponding poits I, it is a simple matter to verify
that the diseriminant conditions and P-curves permute under
Cremona transformation just as the points and O-quadsics
permute in the finite geometry. It is indeecd sufficient to
check this for the single transformation Iysq, since the stabe-
ment is obvious for Gs:. The modular group has the order
26,955 .63 .15.3 = 818640136 (cf. 22 (7)) and the sub-
group which leaves @, unaltered has the order 8! 8640 whence
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the Cremona gvoup in X defined by 2 s isomorphic with
the subgroup of the group of period transformations med, 2
for p = 1, which leaves an even theta function unaltered.

The cuarve of genus 4 which defines this gronp is the locus
of fixed poiuts of 7*". The involution is determined by the
web of sextie curves with nodes at Fi. 1If Ky, K; are two
cubie curves on P;f, o Kf—r Qoo Ko K+ enKi = 01is a net
of sextic curves with nodes at F%, each sextie consisting 61\
two irreducible cubies. Then P(12)'. P(123%... 8% a
reducible sextie, not included in the net, which w;’th%".he net
determines a web w on Py fl‘he wel cont@ﬁis all the
sextic curves with nodes at 5. For, a system (=%} wonld
contain at least a penecil with a fixed pard>P(123%... 8%
and a residual pencil P(12). 1t 5 iy ‘general eurve of i,
and K, the cubic of the pencil on a pdib ¥, then, for proper iy
8§47 K1 as well as the entire net ;@{{5‘”4*’11{1"‘) + 3 Ko+ A Ko Kr
= 0 is on . The \b&%ﬁdﬂfﬁiﬂ,f@:@ﬁ-ﬁ%p et outside Fi are
at the two intersections x,2%f S+ AW and K,. Hence
the net in 20 which ig on @is also on z’ and 2, 2’ is a pair
of a Cremona involutiofi #. Each sextic § of w is invariant
under 7. Tu partiqular each (o Ko+ e K;)* and therefore
each cubie, wo Kn &, Ky, is invariant. If # is on the sextic
P(i%2r... 8”)?,\"9;” is at p, whence I has the same F-points
aud P-curvegnds 7' and eoincides with it.

It u Qﬂle canonical elliptic parameter on K With 2y, -+, Us
as th{f,(im.fameters of P¢ and wy that of py, the ninth base
I}t{i}'{f.’bf the pencil K, then ¢ == ty +- us g E:_, T
‘Thre’ fuvolution eut out on X by sexties with nodes at Py is
\’_.(G — ) +n 4 =0 orn —:-H’ = Quy. Thus K is pro-
jected into itself from — 2w, the tangential point of e,
and p, is a fixed point on each XK, i e, a fixed point such
that all the directions on it are fixed. The three yemaming
fixed points on K are ug -+ 0./2, tty - we/2, Us T ("’1+w2){2‘
The locus of these fixed points has a triple point ab 3}1 with
the same directions at p, as P(1°2%... 8%). Hence ¢, must
be a 9-c with triple points at Py, the locus of points po

which with P! make up a “half period set of nine points”
=
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Such a half period set is a set of 9 nodes of a sextie curve

whenece (ef, * pp. 251-D54)

(8) The Bertini involition IV is the grajection uf cach member
of @ pencil of cubics on I woand pe into itsdlf from the
tungential point of po.  In addition to the isolated fixed
porit po, IV has @ locus of fired poinds () 1with triple,
potits at Pg, the locug of the wenth node of sextics mth

green nodes at P <X \
If the pencil X is o (e x)® 41, (B2)° == (1, the locks) 0f the
tangential point of pgy is N

(4) R=(«a) (B2 (Bpe)* — @) - (o ) (@ P o= 0.

This quartic curve, necessarily rationaleis’ on P& oand has a
triple point at pe. YFor, the hessiand¢rrve of the pencil is
cubic 1n 7,7, and three cubies D vthe pencil have a flex
at po. The set FY, po is respeetively the simple and triple
F-points of a Jouq‘ﬁﬁﬁ’e@bfﬁ‘é{ihﬁf‘f‘ MeLAMyhose locns, Hi, of
fixed points has K as rha polar of pe, and has the eguation

(B) Hy = (ea) (ﬁl‘)‘g (Bug)—(B)" - (e ) (eeppe) = O
A

Evidently Hy is\the locus of the contacts of tangents from
py to eubieg eLf the pencil X. The four contacts ou a par-
ticular cu]nc are — ug/2+P{(P = 0, 0,/2, w3/2, (011+W2) /2)
and the{p)diagonal triangle is the three-point of G5 on this
cubw he four contacts are also on the polar conie of
i8S to the cubie. The pencil of polar conies with the
“pencil of cubies generates H;, and the base points of the
pencil of conics are at py and at the three further intersections
with H; of the tangents at its friple point. Hence
(G) The locus of the tanqmta’al point of py is the rational
quartic B. The GY of fired points of I'® is the loeus of
diagonal triangles of the ﬁnw-pomts cut out on Hi by the
pencil K or by the pencil of polar conics of py as fo K.
The web w is the system of canopiecal adjoints of & which
maps ) upon its canonical space sextic 5. The plaue
of w is at the same time mapped in (2, 1) fashion upon
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a quadrie cone A with a pair of I*7 corresponding te a point
of 4 {cf. ™). For, if

(T) Yo =7 ,5', = -Kﬂz, Y = K} I(IE s = Klg,-

the cone A is y ys—ws - 0 and the cubics K map into
ecnerators of the cone. The ' tangent planes of - ave the,
tritangent planen of % which arise from the cmuudenﬂ, o‘f~
the two 4"s in the canonical involution. The 120 ;gmﬁel

tritangent plaues of @ are those sections of .4 w }néh dorre-
spond tu the 120 degenerate sextics (1) in wk\"i‘hu» the
tritangent planes of the particular canonical Ghoon a quadric
coite can be rationally isolated in terms (}I\’th‘e elqhtholared
points 5. The Cremona group in X defermined by P is
the (ralpis group of the tritangent planes of this particular
spage sextic.  Weber™ has provedy that the transcendental
condition satisfied by W}}“’i‘i&bthﬁﬂlkﬁmwm gin(th) = 0,

Any cubic swface on (i flillllbh(’q 4 cubic polynomial in
the sexties of w which jgN\fhe equation of @7 taken twiee.
The general enrve of gr?tr-l 37 with A-fold points at Pi las
the form \\

"ILS KK+ 28" KK ==
zx\ BT = h—B: 24 oS =7 »)-

(3

its t.ram%§;ﬁ1 mnder I is obiained by changing the sign
of GHAY

“With the isolation of the individual titangent planes of
(4 all contact systems are rationally known. For all such
systems contain members which Dbreak up into groups of
tritangent planes. Since on the special & the even theta
function 2, («) is of special character, the half periods divide
into two classes according as they do or do not satisfy
Hy () = 0, These classcs are:

Py, Fiu, P, Pog;

9 oo _
( ) ij; -PJ'!)} -E)URU] -P‘:JIUO (E?.]T T 1’ T 8)-
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They contain respectively 135 and 120 half periods. The pencil
of lines on p,, say F'(1;s5)' where s is the linear parameter
of the pencil, is converted by I'7 into an F (1321 ... 8% g'!,

The line on p meets G4 in 6 variable points which also are
on its transform. The product of the line and its transform
is a 12-ic with four-fold points at P which mects & doubly,
at 6 variable points and thus is the map on the plage ot
a contact guadric secetion of 4. The product mntmn‘s &
quadratically and furnishes a quadratie system (&) ok, dontact
quadrics. For the seven particular values of & “or which
F(1; )" passes through pe.--., ps the prog{x@i’dcgenera‘ces
further into O35 Osgo, - -+, Oise Uggy, 1 0, theJsystem (o'} of
contact quadrics contains T of the 28\ pairs of tritangent
planes in the system 7. The 1119.13&{?51:5 of this system Fiy
can be expressed as a quadratic $em (o) in terms of the
parameters &, &, & of a line iu;a‘pl:me m: and the quadratic
systems (o) contai«m&:uﬁ:&hiuiiitahyiaﬁgMMn lines & on a point
of m. It is easﬂj, verified thd;t Cremona tr r«msfm mation Wlt]l F—

points mPs,apDhedtothe (‘J:}autemFU st F(1 ot gt bJ ,

yields 8-.135 sy %ter@s\(acl) which lie 8 at a time in the 135
systems (") deterfnified by the fivst class (9) of half periods.

Of the 135 @ystems (%) the one associated with Fuo is
:;)mmemcal ~W1fh respect to IP. Ttz eight systems (x') are

(10) {ﬂ F(e Thimnop; - FE BB P ad 0f o® p¥s )
O (i =1.---,8h
The system 8; determines a point 5 in the plane = of &
\‘ﬁhd the line & = ; #; determines that. pair of tritangent
planes in the two systems S;, S;. These pairs arise in S
from the seven values of ¢ for which a member of the pencil
F(#5.-.p; 9 contains the factors P (ij), ---, P{p)t. This
pencil is projeetive to the complementary pencil in (10)
which, under the Geiser involution 77 with Fpoints at
Pj, -, pp and corresponding pair p;, ps, becomes the Jine
peneil on py while the seven members mentioned become the
lines from py to pj, -« -, pp. Similarly in the system §; the
pairs of tritangent planes have parameters projective to those
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of the lines from py t0 pi, pr, -, pp. Hence in = the peneil
of lines § from w»; to »g, .-, v, i8 projective to that from
¥; to the same points and the eight points »; in 7 are on
a conie, the conic  with parameter ¢ in 50 (21) (cf. slso
50 (23)).

Following out the geometric developments of the preceding
section this quadratic system P is supposed to be written,

as a form f(§% «). For given point » on =, the lines(&)

on r determine a system {e¢') whose envelope is a curve ot
order 24 which consists of G} taken twice and a_sgxtic of
the web . Thisz envelope is the point equa@l&gﬁin vari-
ables » of the conic, F(&°, 2" = 0, of lines &\ Eliminating
(D" the equation of the envelope is g (p2°) = 0. For
variation of » in g := 0 the sexties of r.-'ﬁ:ﬁp upon the plane
sections of 4 which cnvelope the (]ag-"]'ey cubic surface (%
associated with the quadratic system’Py. For » a point
with paramecter £ on Zﬂr\$1#?d§%§m§ﬂ£:€%~§iir§ﬂtf’ two cubies 7
of the peneil on P7. In pat{f’i(:ﬁlar for ¥ =9; and t=#;,
the parameter of the 1il]e~jlg;}}{ in the pencil on ps, the sextic
is the square of the m{zhu, 7 which touches the line py g at
pi. For, the pair o&ﬁynjective pencils in (10} generates the
curve (&) and a residual cubic K; while the envelope of (10)
as a system qudratic in s is the square of the locus thus
generated. f}.‘\ﬁe'particular member

7\ .
P (-\a}ﬁ{r?(i*khnnop):’-P(_ijfa:s’ e p2 P (PR p)f

conjr.;tfu’é that point u of K; in whick P(zj)' meets Pk 1’?3-

Fhew 14+, — 0 and w-k 2w+ wet - Fup =0 while

Wb - g =20, i.e, 2u;+m =0 and K;

touches pgp; at p;.  From this there follows:

(11} The form (el)* (ar)® = 0 (et. 50(21)) which defines the
Cayley cubic surface assoviated with the system P b of
contact quadrics of G3 on the quadric cone ‘4223 that
wehich expresses that the abic © of the pencil on Py loudhes
the line £ of the pencd on po.

We observe that (eei)* (ar)®==0 is the equation of the
curve #Hy in (b) if the codrdinate system is chosen 80 that

Q"
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{ as before iz a line on gy while « is the polar conic of p,
ax to the culie r.

Tt was mentipned above that the set py, . - o, pg was
congruent to pig, fia, » - -, g under w Geiser 17 Thus the
8640 sets Py Longment to o given set are distributed 9 at
a time in 960 sets Iy and (cef. also V7 1T (47)) AL

(12) The infinite nwvmber of projectively distinet sefs Py com-
gritent o« gicen sel vediees To 960 el the Ir;a.’a}?rn.\ st
is the base of a pmm’ of euhics, \,

Each of the 8640 sets Py determines in the aboxé f‘l*-hl{)ll (11)
one of the 135 contuect xvstems and each w}kfsact »}%Tem is
determined in 8640135 = 64 wayx. ThesB4 scts P whieh
define the contact system Py ave obtghued from e by the
Jonquitres group Gae of 38 (15) att(n\hed to Hy.

The 120 systems of contact qnfui‘mca of () associated with
the second type of halt-periog\(¥) arc entirely different in
character from thwwom@nhrwmgmmed The contacts
are cut out on &% in the lane of P by nets of eiliptie
curves, The nets of gliptic enrves determined by % which
cut ¢ in six variaplés points are paired under J'° into four
pairs of types wiiich arve distinet under permutation of the
poiuts of Ps, mmclv

2N
AP T, 8B F(1F... T8 8% &),
\Fl-- 6 TR B F(1%... g2 7R B
(13)’§ ( 1‘) ( i ")T_.
F{1234%. .. 8% 55 (12273842 8% &)Y
O FR2st.su ot R s 8% 9N

These ave typical of 8 28 56 and 28 respectively; and the
tour given in (18) are associated with P, Prege, Pizso Fiz
respectively, Tor example in the first type & is the ternary
parameter of the cubic of the net F(1...7; &3 of cubics
on pg, -+, pr which meets ] in six variable points. The
transform of this net by I'* is F'(1%...7% §° which for
the same § cats G5 in the same six points, The product is
a 12-ic, quadratic in &, with four-fold points at Pi and
therefore quadratic in sextics 5, which touches Gh at six
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points. Its map in S; is a quadric which touches 6 on the
cone 4 in six points. Tn F(1.-.7; E)® there are 28 degenerate
curves one of whick is >(12). P(84567)° whose transform
by ' is P(123%...8%5. P(17223 ... 78%% Hence the
contact system contains the pair of tritangent planes (¢f.{1))
(hey Chee and is associated with Pyg.

We discuss this type P further as a sample of the

120 contact systems. Taking again the parameter ¥ ag )

a line & in a plane 27, the G is transtormed into the W-sextio
whose line sections are the contacts of the system of quadsics,
Py. As & rotates about the various peints » inl{, the
various quadratic systems (oo'} in the system (oo%} ate Obtained.
When » is fixed and & on » has the parameter g\the quadratic
system (), F(1..-7; 9% F(1°... 78 8% 5)* Bas for envelope
the square of the 12-ic curve generated byits two eomponent
pencils, This 12-ic is composed of .'G'g.’and the cubie X of
the pencil F (1 --- 7; s)*. ayhich, Hieg i Ths pepgil (1--- T891°
The residual envelope is therefore X~ the section of the
cone 4 by one of its own tapgsnt planes rather than as before
a tangent plane of the Cagley cubic surface C°. Hence
(14) JfF n space sea:i@'ryf}g‘ s on a quadric cone A and, suy
Gy (0} = 0, thp }20 Cayley culic surfaces on Gﬁ, Q850C1-
tited 1:ith th?’; 120 half periods P for which Jy {(P)y=10,
collupse ca;u\{zu-arta'c envelopes tnto the tangent planes of .
In spiteof“this collapse of the Cayley surface many of its
propertieswiay be observed on the cone A. It is appavent
first of %M that, with reference to the system Py of contact
quadi‘i(},’s of Gﬁ, there must be an isolated tritangent plane,
O Tor, the condition (0} = 0 separarates one system
(oc®) of contact enbics from the 135 others. A partial system
(202} contained in this system {oc), and therefore determining
it, is that eut out on G by the lines of its plane. For, such
a-line and its transform by 7' make up a curve of order 18
which is mapped by the web v upon the section of 4 by
a econtact cubic surface. The system (oc®) to which the

system (o) reduces when the three contacts of Oy are

fixed is the contact system Pi.

N
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The properties of the svstem 2, are broughd out by a study
of three mappings, The lirst of these. M, is that already
emploged i which the pairs of 77 in the plane 73 are mapped
o1t the points of the econe 1. The second, N, is that in
which the pairs of the Geiser uvolmion. 77 determined by
pre oo g are mapped on the points ot o plane soin sugh
wise that a line & of v beeomes a cubie cwrve of the net,
F(-.7:8% The third, N, ix 0 mapping of the mkiﬁm ¥
of @ upon .4 which is defined later.  We observe qist that
the 19-ic. F(L---T; % F01% 0 TRt 80 is mgipped by A
upen & contact quadrie section of (1. 1 -.\1\ such that
FO o708 ds a0 cenbie K of the penedDon po. po then
FOP TR EP = KPP TR aud s quadrie
seetion of o1 is by the tritangent llliﬁf@.\/}sun, and the tangent
plane of 4 along the generator Slitel ix the map of K.
Thus the system (7 obtained X3 adjoining .1 to the svstem L,
confaing, in :1diliti\(mwr(g)b,q&m]j;?&ﬁmig-in{}f tritangent planes
mentioned under {(13), Tlm ac" pairs of tritangent planes com-
posed of (, and a Lmabh‘ tangent plane of ;4. The space
enbic eurve onp theimm contacts of such a coutact quadric
i= made up of tlfeddenic section of A by the plane Oy, and
the confact geerator. The so! eubic curves of this wort are
all on the w@rsex of .1 and the three contacts of My and it
will dppgm “Aater that
(10 ThYE® spuce cubic curces on the siv contacks of quitedrics

K the system Py all puss throwglh the fouwr verfiwe of
\3."‘ a tetradedron T formed by the node of A and The Thiee cott-
“ tacts of the tritangent plane Ogey (ef. 50 (14)).

In the mappiog, N, the curve G becomes a H=-sextic which
has a triple point at 7Y the map of the pair, p., pu, Of T
The three points on W at +* eorrespond to the three pomth
on &5 at py and therefore to the three eontacts of Oy With 04
The pencil of cubics K becomes the pencil of lines on 3" :
The transform of G} hy TTis an F(1*. .. 79 9%)* which meets &)
in 18 peints outside 7% of which 12 are the fixed points of I’
where J(1%..- 79" meets G§. The remaining 6 points ave
made up of 3 pairs of 77 which map into the remaining three
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nodes +, #% »® of W. The web of canonical aﬂjoints of W
consists of cubics with a node at +° and simple points at
', % . The two g{’s in such a web are cut out by the
pencil of lines on #° and the pencil of conics on »2, ..., 93,
If they coincide, as in this case they must, the nodes ', +2 +*
of W must lie on a line &% TLet N’ be the mapping of the
plane by these canonical adjoints of . The lines & on +® map

into the generators of 4 and W maps into G5. The directiong\J)

at r° map into the points of the conic section of A by the to-
PN

tangent plane Oggo, and the points of the lines +*»*, »"¢%% %"
map into direetions on A about the three points of ontact,
The points of & map into directions at the nodeldf)d. Since
a line & in general position euts &%, »%+, »*¢®% 4% and cuts 1
in 6 poiuts, it maps into a cubic curve ouo\ii,\oh the vertices
of T (cf. (18)) and the 6 contacts of a quadele of a system L.
If & iz on #° this cubie curve breaks np'into a generator and
the conic on gy, 2 res%@l_g%qg&lﬁg‘- i %Qé{%h the mapping M/,
The divections about the points #w®, +¥ map respectively into
the generators of 4 on the contacts of Ogp. This same figure
in 7 is obtained from the“space curve by Cremona trams-
formation {cf. 50 (17)) dvhence
(16) The regular cubic Cremona transformation with Flpoinis
nt the node q}{ﬂ“m}d the contacts of Oggy transforms 4 @“?Ie fo
a plane gy and G5 into the Wesextic with a triple point
at v i’ three double points 1Y, 4%, ¢* on a line. The
cubid etrves (15) pass into the linear sections of W.
Tl'le{fp"i'oof that this inversion of the mapping &' can be
-de; s easily supplied. . _
¢ is clear that the &5 in the plane of FP; i3 determined
in % by the choice of a planar quartic curve f* with an
isolated Avonhold set of double tangents, and a point »”
For then the mapping N can be inverted. The connection
between /%, +° and the We.sextic, which we do not pursue
involves the twelve tangents from #* to f%, a topic recently
disenssed by Zariski (" pp. 317-8).
The @} in the plane of I% is also determined from Fhe
space 12-ic referred to at the close of 48, the intersection

Q"
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of the dianode sextic smrface by the quadric .4; on its triple
points, Q_:,—‘. If thix 12-ic curve isx projected from its triple
point at 4, the triple points at g4, -+, ¢ and the two
cenerators o on 4 yield the cight triple points of (.

The individual eontaet quadric systems of the partienlar 65
an the cane A have each been ulentified and related to the
ermrve (4 in mueh the same way as was done in 50 for the
general cve (5. A closer study of this ]mti(ul{msu.ue
would doubtless bring to light velations among H](—“\F contaet
systems whiclt would frumish indieations of the ulalmm sought
in eonnection with 50 (20). e

Sehottky ® has obtained the eotr AinatdOS 1Y amd the
oquation of &1 diveetly from the modnh{juurhmh for poe== 4
on the assumption that (0} = 0 (gf J58).

52. Special planar sets. TheMén nodes of a rational
sextic. In the planc the ulllnhefwfit' types of Cremona frans-
formations with ¢ 2.9 Jgﬁgﬁmf,mi%,.gpgm,iﬁo and a geneval set
of points .Pi, is ther (‘J[(H{‘ ,(*Qnﬂ_ment fo an infinite number of
projectively  distinet wtl"('T 11 (7). Nevertheless certain
special sets exist \\JN('h are xelhnuﬂuum under infinitely
many types and ?Lg~ a CONSEREREE are congruent to only
a finite numbermf projectively distinet sets which are permuted
among themsClyes under regular transformation. Such a special
set definessall infinite Cremoma group in the plane.

b 4Ki% Section three special planar sets of this charaeter
aredistussed: (a) F5, the nine base points of a pencil of
L ghl‘lb, {11 h, the nine nodes of an elliptie sextic: and (¢) Plu

<~3t~he ten nodes of o rational sextic. This acconnt is for the
most part deseriptive, Details of proof may be found in
memoirs of the anthoer ('71I;%°;1%),

We have seen (ef. 51(12)) that a set, 1%, of base points
of a peucil of cubies is cougruent to 960 sets, or, in some
order, to 9'960 ordered sets. Tt is in faet sclf-congrment
under the Jonguitres involution J° with 4-fold Flpoint at pe
and simple Flpoints at p,, ---, pe; and also nnder the Bertini
involntion J'? with fixed point at p, and G-fold Fpoints at
P ovees o pye Let JP = F, and T = F, to indieatc the
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gymmetry m g, ---, ps.  The product Dy = Fy K, is of
infinite period and Fy, F, generate an infinite dihedral group
within which they are involutions belonging to different
conjugate sets, This dihedral group contains an exemplar of
every Cremona transformation with 9 or less F-points of which

8 are of like order (*" I (40)). These dihedral groups, formed
for each of the points in turn, qgenerat-e the entire ternary,
Cremona group under which Py is self-congruent, i. e.,the™
Cremona group 4,2 which transforms a pencil of cubics ifito
itself. In fact if we set (s, = £; K then the trangfgﬁmzftions
comprised under N

D DR - DPOR G - O

1 Y,
() (92:"'}99:0;1:2; QE‘}‘"}'%:&

0 mod. 3}
for all integer values of »,, .-, 2 Qglistitute an invariant
abelian subgroup of i of indggf;t.\i?o and the remaining
elements are products*of (BPiAgkbiErea kR Blution such as £
(cf, ' I[ (42) in which the limitation gs 4 - -+ +¢o = O wod. 3
is overlovked). 1f the ottered planar sets P5 are mapped
as in 7 upon points PCof a space 2,, the aggregate of sets
congruent to P is “wiapped upon an infinite aggregate of
points in 3, copjugate under the Cremona group Gy.qin i,
The special setdP; which are base points of a pencil of
cubies are “\rﬁ;}ﬁped upon points of a manifold My in 2.
The tran}im‘mations of G- which arise from the ternary
Cremotids group 7,2 above constitute the subgroup Iy of Gg,e
for (wllich A is a locus of fixed points. Thus o,» 18 an m-
%ariant subgroup of G2 Whose factor group Fya of order
91960 is the finite group of permutations of the pmgts on
M, effected by Goo. This factor group is represented in the
plane by the 960 ordered sets congruent to the set of base
peints P and is the group of the tritangent planes of the
space sextic 5 dicussed in 51

In the case (b) when P is the set of nine nodes of an
elliptic sextic it is self-congrnent under the nine Bertini m-
volations &, ..., F; and therefore also under the trans-
formations ¢, (i = 2, ---, 9)in (). It is not however self-
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congruent under ¥y, -.-, Fy and the number of projectively

distinet sets congruent to F§ is enlarged to 2% 960 (*' 11 (47)).

The Beriini transformation is that of lowest order for which

the linear transformation § of 4 {1) reduces to the ldentity

mod. 2 when the two sets of F-points are properly ordered,

Henee as elements of the arithmetic group gu» of 6 the

£y, -+, By as well as their transforms by any clement of

fu.z reduce to the idengity mod. 2. Moreover the sep-Ps st
be self-congruent under the transform of a Bert.i'nj}‘iﬁvolution.

The square of the element Dy, = £, - £, in (1))55.}’?2 E, Fy - By,

the product of X, and its transform by ,trhb\involt'lt.ion F.

Thus £ is self-congruent under all (heN¥husformations (1)

for whiel v, ..., 1y are even. Hel}i‘,ﬁb:

(2) An elliptic sextic with nodes at:\P;“) is tneariant under
a ferpwry Cremona group -g'{f}"»_iﬁgmwmfed by Bertini n-
volutions and their r:wms)g’gécs, which has an invarignt
subgroup of intler liwoedomprisedoal the elements (1) for
which vy, -, vy areseben. The remnining elements are
olitained by ftddii{f n factor E,.  This group 8 isomorphic
with the inewhpt subgroup gos (2) of gs,2 whose elements
are veducible Yo the identity mod. 2. The fuctor group
ﬂff"g of .92';3'.@) under g, , 15 isumorphic with thet subgroup
of ordery 91 25 960 of the modular yroup (p == D) which
leapesitivo even theta functions unaltered.

f_[:l%{)rder and character of the factor group 42, is derived

ind With 2p + 2 = 12 subseripts 1, 2, .-+, 9, 0, , 8, and
~Linvariant even theta characteristies Qoe, (o, and therefore
\/ invariant period characteristic Py, the group is generated by
the involutions attached to the points in the finite geometry

not on either quadric Qu, Qoz. It is sufficient to identify I

with the transposition (ps, py) (6,7 = 1, -+, 9) and Jowss

with the quadratic fransformation 4,s;;. The factor group
has an invariant subgroup of order 9! 960 whieh arises from

the same transformations as in case (a). The additional 28.960

congrilent sets ‘can be obtained from the 960 of case (2) bY

applying the eight involutions F;, . - ., ¥ in any combinatiol.

The effect of the Cremona transformation on P is determined
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most. easily by taking the set on a cubie curve with canenical
elliptic parameters #,, - -+, #y and ¢ = u; -+ -+ +uy. Then,
in ease {a), ¢ == 0; and, in case (b), 20 = 0. C(learly a
similar situation is present when P is the set of rfold poitts
of an elliptic curve of order 8+. This method is not applicable
in the next case,

In case (¢) let Pip with points py, ps, -+, Po, Py be the ten
nodes of a rational sextic S(f) with parameter £, This .ée‘r.\
is subject to three projective conditions and has 9 ahsoiute
coustants. For if P4 is chosen, pe must le on the. cutye &}
(51 (3)) and, for fixed p, on Gi, po must be one &2 points
on G (2 pp. 251-64), There is but one ratienal’sextic with
nodes at Ph, and S(f) is therefore invariant:,m\&d‘er any Cremona
transformation for which Pi is self-congriient. If Ky, is the
Bertini involution determined by F5 farwhich py, po ave fised
points, then Ply is self-congruent, ,agd"é’(t) is invariant, under
the Crewona group h’“g’éwﬂ@!’a’@d@tbyyth@.t&ﬁ Bertini involu-
tions ky (3,7 =1, ..., 9, Oand by their conjugates under
Cremona transformation cwith F-points within P, Since
these generators corygs})ond to elements of gio,2 Which are
congruent to the ide{txﬁty mod, 2, the group % currespm?cls
o a subgroup ¢iu2¥2) of that subgroup gio,2(2) of g,z which
rednces to the iiié'r[tity mod. 2. In order to prove that 10,2 (2}
coincides with™i0.» (2) we introduce a particular set of 5217
P—curveS\b“f\'Pﬁ) which in the customary notation, called Lere-
after_the'signature, ave of the following types:

N\

Gy-rar, pazy, P(12345)°, Pa2... T P2 9%
Two P-eurves, P(127... 0 and P(1% 2% ... 0%, for
which #; = s and r = ¢ mod. 2 are said to be congruent
mod.2. Thus the aggregate (3) comprises

10 10 10 10 10y

() (5)+ (5 (5 + () = o
incongruent types since in the fourth type i = iy and in
the fifth 2 i = & é.

Q"
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Any two Menrves of 1 whose signatures are congruent
mod. 2 are eonjugate or eguicelent under an element of the
group kb (** pp. 246- 47).  For example the P-curves, P(8)"
and P(1E00 THE%%, are conjugate wnder . This pair iz
transformed by the quadratie transformation dgp, into the
pair P67y, P(1%..-5*GT8)% aud the latter pair is eqm:
valent under that element of / which is the transtorm of ¥,
by 4. Proceeding in this way all the {:qui\';'llc}L({eﬁ".}rzell-
tioned ecan be proved. Tt ¢ be any Crenona trausférmation
whose correspending element In gy is (tougiiiéut to the
identity mod. 2. Then C transtorms P03 Qv 2 P-curve.
I congruent mod. 2 to P(0)". An element /7, exists in %
which transforms F(0)° into £, Heer: (h leaves P(0),
the directivns at pg, unaltered and tlerefore is found in the
group s of (2) and is a produghdpf Bertini involutions and
their conjugates. Then ' itsed+is a product of the same
chiaracter. Hencewww. dbraulﬁﬁl ary.org.in
(1) The infinite group m,& o;‘ ternar y Cremona tr rms,*r»mrtismls

under awwhich a  raqPonal sextic S(1) with nodes ul Piy is
nucmfmt 5 g@’ﬂéated by the Bertimi involutions with

Lpoints iy \Rﬁu and their conjugates. It is simply iso-
o plic with that invariant subgrowp gros (2) 6f fioe whieh
is congiient to the identity mod. 2.

Since 'Pm is self-congruent under a3, the projectively
distifes- s(,ts congruent to it are obtained from tmnbtomm—
tmn:, which eorrespond to elements in the factor group gm
(OF o5 (2) i gro». This factor group (cf, 27 (8)) has the

\ Yorder 10!2%%.3] .51 and is isomorphic with the subgroup

of the medular group (y = 5) which leaves one even theta
characteristic unaltered and permutes the remaining 527 as
the 527 classes of congruent P-curves (whose cxemplars are
given in (3)) are permuted under Cremona transformation.
The subgroup which leaves one of these FP-curves, say P{0)%
nualtered has the order 10! 2.8 — 91 28. 960 which is the
number of projectively distinet ordered sets P; congruent o
the nodal set Py under transformation for which P 18 8D

ordinary point. Heuce the factor group g2, gives rise 10
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10! 2. 31 - bt projectively distinet ordered sets Ppy congruent

to the nedal set or to 2%.31.51 unordered sets. Hence

(B5) A general vational plane sextic with fen nodes can e
transformed by Cremona trangformation into precisely
28,31 .51 projectively distnct sextics. Under such trans-
Jormation these distinct projective types (with ordered nodes)
are permuted according fo that group of the odd and even
theta characteristics (p == ) which hus an invariont &ed)
characteristic, : . O

The number of discriminant conditions on the nodibset Pi
is finite. For example there is a transformationdn’#, which
leaves §(¢f) unaltered but comverts P (i .. §(3\27382)‘ inte
the congruent P(12345)". If then the discriniinant condition,
5(1-.-596° 78N == 0, were satisfied by i, the same
set Pi; would satisfy the congruent celidition, 4 (123459)° = 0.
Hence (cf, * pp. 249-50;%§4) 4
(6) The number of \\d@sx;?;{mzémggmiffwgfjg%s——mﬁn?‘te mg the

cuse of « general set Byis finite for the nodal Pu of

S8, a set subject to Hhree vonditions. Any two discriminant

conditions whose ;:alg@atu:res are congruent mod. 2 impose
the same fourth i;fm?la'tion on the ten nodes. The members
of this finitgnaggregate of 496 conditions are permauded
wnder Cregiohts transformation as the odd thetn chavacter-

istics apepbrmuted wnder the group of (4).

This. ¢quivalence of discriminant conditions yields an in-
ﬁnite.'@i‘éty of theorems relatiug to the nodes of S{f) of
thedollowing type (** p. 250):

"ﬂ;}(a.) If the jacobian of the net of cubics on seven nodes of
\ S'(t) Pta8es ﬂ,},-}'ougk O, it passes th?'o?{gk all three Of the
remaining nodes. (b)) If an adjoind quartic of & [_i) has
a triple point at one nede of 8(f), there will emst on
adjoint quartic with a triple point at any one mode of
). i

For later specific reterence let the basis notation for p =0
be taken with subseripts 1,2,.--, 9, 0, «, 8 and let the in-
variant even characteristic in (4) be that of Eeg. Theno-

tation for the group is then symmetric in I, 2, -+ 9,0.
1a
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The 527 elasses of congruent f-earves are then, naned as
thetr exemplars secenr in (3},

1311 !’;1;; . f‘z.jg . l“;]u:’.a:.;; . 1’:-_». T f‘,‘|_|_l1' .

The 486 diseriminant conditions on F5 are of the fol-
lawing tyvpes: QY
dil2y o0, do3y 0, a8t (A »
[ha i - o )
AT D I 0, &{1*2 ... 90 0rs

o N T (10)
Phe Jirst three conrprise respectively (3)t\; ], and 6
conditions,  The last two by virtue of (Zafand (TL) comprise
Rk .- \ .
only tiT ’ angd l“) conditions,  Theyghwtespond respeetively

to the odd theta characteristios: NN

(81} Ul ity ”1 s U;‘B'Iuw (Jlliuﬁ, ().
WWW, dbraU«lrbl ary.org.in
Since the even theta ('h,n«mfm istic Fg is invarfant these odd
chfu(lntemtws are pelmuted just as the 496 points, Eug-r On
2= Pugm, in the hmt@\gemnerr\ {(p = 5) which are not on the
quadrie Geg. ’l‘hQs the diseriminant conditions arc permuted
respectively ag the half perieds

C\.~

(8.2) x,\:“ Py Prosey Prssoeg, Proops Pege

The Q&heratmg involutions of the factor group are, in the

ﬁmtﬁ geometry, the involutions attached to thesc points
...\(bf. 22(10)). In the plane of S{#) they are respectively the

‘transposition (p(, pe), the guadratic transformation

A = TO2), T(F... 69 T2 .. 805,

and T(1122%... 9* 0% (cf, 6 (4), (8), (D).
A transformation = of the group &%, in (4) which leaves
the rational sextic S{¢) wnaltered must be represented on the

sextic by the binary transformation of the parameter

(9) tr o= (gt B/ (et d).
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The traustormations thus induced on S§{¢) by &, constitute
an infinite discontinuous group yip2. It may be that Cremona
transformations exist for which S(#) is a locus of fixed points.
This is not very likely since sueh transformations would no
doubt have properties so striking that they would not thus
far have escaped notice. If however they exist they form an
invariant subgroup of 445 » whose factor group is the Zroup 7o,

The Bertini involution Ky with F-points at Fi and fixed po{'nls\

at pg, pp 18 in .-‘,E:))g Since Ay leaves S(¢) unaltered, is‘ixed
points on S(H are the intersections of its fixed 10(:1;%”@2 out-
side P;. But, of these six intersections, four _4ré/found at
the nodes py, po at which the nodal directions and the nodal
parameters £ of 5(¢) interchange. The rqn@ining two points,
at which S{f) is tangent to a cubie ;;t(i‘ife on Pi, are the
proper fixed points of the involutipm\s determined on S8(¢)
by Ey. These constitute the jacobian pair of the nodal
parameters at pg, powww.dbraulibrary org.in

The P-curve of the set Py P(1)°, has two directions at p;
in commen with §(#). ,Heliée eyery F-curve has just twe
points in common with\S'(#) ocutside PL. The two P-curves,
P and P{O)°, ha{é"ﬁo points in common with each other.
Moreover any twoNP-curves, £, P, which have no common
points outsidp, @, can be transformed simultaneously into
P(9) and POY. For if P’ is transformed into P(0)°, P is
transfornfed Into a P-curve, P which has ne direction at po.
HenealP" can be transformed by a transformation with an
ondilizii"y point at p,, and therefore with invariant P(0), into
P{9)°. Hence (¥ § 3)

}1 0) Any fwo Pocurves of Pl which have no intersections out-
side Py determine a generating involution {a Bertint in-
volution or ils conjugale) of foa ond also @ generaling
involution T of yiw,2. The two Pourves meet 8(7) outside
Py in twe pairs of points in the involition ©, whose
jacobian pair is the pair of fued points of T.

The binary collineation group 71,2 is thus intimately related
to the aggregate of pairs of points cut out ou S(t)' by the
aggregate of P-curves of Pi. A P-curve With signature

15+

Q"
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PN ... 9707 cuts S{#) in 2 pair of points whose parameters ¢
are determined by a binary quadratic, say ¢(1™... 90"y
With reference to a norm-conie N (#) in a plane this quadratic ¢
is represenied by a point. Henee the F-curves determine
an infinite aggregate of points in the plane of A'(f) which
divide into 527 sets of conjugate points under the discontingops,
collineation group 7', induced in the plane by the group
7102 on the conie N(f). We shall find later (cf.,s's;ﬁsﬁ)
notable properties of this aggregate. \
53. Special sets in space. The ten{ nodes of
a symmetroid. The special set, Gk, of mg\ht Lase points
of 2 net of quadrics has been discussed in &4 with particular
reference to the 36 scts comgruent to\it. At present the
group of regular Cremona tlanbform‘lQons with invariant net
under which @f is self- -congruentils’ more pertinent. This
group, 75, is discussed under’cdSe (a) as a basis for the
further discussion @rﬁv{b@l}aﬁ&mhladfwmm@ set (i, (c), the nine
nedes, and (d}), the ten updﬂs of a Cayley symmetroid.
Unless otherwise spegified all of the Cremona transformations
employed are regujogy i e. products of collineations and
yiyi = 1 (F =0%)\", 3). Three types are particularly use-
ful: the Kantof \involution 1% (type T'*° in 44(1)); and the
dilated Gelsex ‘and Bertini planar involutions. If a planar
transfmm"tr‘on is expressed as a product 114k of guadratie
tI‘dnSfQ\I‘HTdthH& Am with F-peints in P7, and the permutation 7
of the points of P2, then the spatial transformation, whose
. eXpression is the product [14ogx:7 of cubie transformations
\' VAo with F-points in the set QE+1 == go+Qr and the same
permutation = of the points of Q.,-, is called the dilation
into 8 of the planar transtermation {cf.?* §4). The dilations
into 8; of the Geiser and Bertini transformations are (Jn the
notation of 44 (1)) respectively:
1 7 1 8

) 15 —1 -3 . |8 —16 —s
114 —6 —3 7 1/32 —15 —86
71 6 —3 —2,—1 812 — 6 —3,—2
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I# the eight F-points of the dilated Geiser transformation
are a half pericd set on their elliptic quartic curve the direct
and inverse Fipoints are projective. When they coincide in
the identieal order the space transformation iz an mvolution
(®° (28)). The similar fact is true of the dilated Bertini
trangformation when its nine Fpoints are a half-period set,
i, e. any eight are a halt peried set on their elliptic quartic
((29)). The elements of g, 5 determined by the Kantor\.))
invelution and the dilated Bertini involution reduce mpd.:E
to the identity. This evidently is net true of the &ifafed
Geiser involution. ¢
In the ease (a) when.Qﬁ is the set of base po*i"flt\-s of a net
of quadries, let €5 be the Kantor involutipu\'xﬁth ordinary
point at g, and Gy the dilated Geiser inv@xﬁon with Fpoint
of order 14 at g5. Then Dy == (s Gy i3 of infinite period
and Cy, Gy generate an infinite dihgdr:a.l rroup whieh contains
all transformations fﬂ%m%?anﬂﬁg’i;é}y%rg?ﬁ? a symmetrical
set of Fpoints. Under theseland like transformations at
the other points g, the sef Qi*is self-congruent. Since also
0% is congruent to projéctively equivalent sets under Asas
and dgeg (of. 44(9)}\'\it:’is self-congruent under Ajess dsers
and therefore undeh,
(2) :E;L\,S' = dsosr Asner - dssr Aresa-
A
This prod\ﬁif}’lf?l:g is also defined by the fact that Eig(18)
is T’g‘ipﬁm (1), In terms of the products
(3)\:;\.."' Dy = € 6y, hy = (2 G4
there follows (7 TI pp. 376-T): ‘
(4) The group iy of regular Cremona ransformations with
an invariant net of quadrics and self-congruent base-points
Q% has an invarient abelian subgroup of index fwo whose
clemends can be expressed in a single way in the form
DDy DY O O GBS Byt o B
(93; rery @8y O3ty Oy = 0’ ])
These muliiplied by Cy complete the group.
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This group #ss gives rise to an invariant subgroup of Gy,
in 3, whose factor gronp is the modular group (p = 3) dis-
cussed in 44.

In the case (b) when Qi is a half period set, or the 8 nodes
of an azygetic 8-nodal guartic suriace, cach point is on the
Cayley dianode sextic swface determined by the other sevem,
The theorem corresponding to (4) now reads (711 (46)):

(D) The group ?("1 of regular Cremonn 1y ﬂ','?x;‘mmm‘mmw?‘afh
an invariant azygetic B-nodal guartic surnface, il self-
congruent nodal (4 has an invariant -:cbefsai‘}mnbm oup of
index fwo whose elements are M'\('

Df’e Dva .- D”a (_"_‘is’i ()42’; . (wi’s (Q% e, O

LR

=z 0, 1),

These multiplied by () complete’ ﬂ>’ group. The set Q% s
congruent to 36.2% pr q}ect?m’j Hestinet sets which arve per-
mated under ?‘(igu.?m (?”Pfii)O?W fmmﬁ;mmfmn according
to a group f& of orders 81"“‘ ‘ ‘

This group [ @ g a factor gronp in the modular group
(p=4) of order 1012851, The subgroup which lcaves one
of the 2556 half p\ioﬂs or points in the finite geometry &,
nnaltered, has the® order 8! 2.9 and is generated by the
involutions qt\tached to all the points of 5 which are syzy-
getic with.fhe invariant point, say Ps, in the basis notation
(19(lg:i§,i&mong these is the involution J,, attached to the
invagiant point Py itself which evidently must be invariant
1n ‘the subgroup. The factor group of the subgroup with

~Fekpect to this invariant g 18 o3,

A more explicit identification ot f(m may be made by means
of the finite number, 2.63, of discriminant conditions of the
set Q. If this half period set is taken with canonical
parameters i, ---, #g on its elliptic guartic curve so that
-+ - ug = w/2, the three types of discriminant cen-
ditions and their identification with points in S; syzygetic
with Py, are:

) P owyy—uy = 0; Pusy: it oo Fug = 0

Pige: wy—us+w/2 = 0.
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These represent respectively the coincidence of g, gs; the
coplanar condition of ¢, ..., ¢4; and the condition that
a quadric with node at ¢, (or at ¢) is on @3y - - gs. That
all discriminant conditions reduce to these is proved as
tollows. Under the Kantor involution C, for which Qg is
self-congraent the directions at ¢, become the points of the ~
P-gurface P(1°2%...7%% or P(1)°== P(1°2%... 724, On
transtorming this equivalence hy Ajsse and dygse the further))
equivalences, P(234)' = P(1223452627%)% and P (1223458}
== PP{134667%®%, under transforms of (5 for whicﬁgﬁfso o
is self-congruent, appear. From the last two tl{eté follows
that ¢(2348)! = O implies ¢{28481%°5%6° 7> 250 and that
d(12234568)* == ( implies 6 (134567%8) = 0., This coincidence
of later discrimipant conditions with thé/initial ones given
in (8) is sufficient to show that allMare reducible to those
in (6). 1f furthermore the invo]utjqrfs. attached to £y in the
finite geometry are idensifief. gl the . franspositions (g )
in @, and those attached to Py (s, 7, &, { =1, .-+, 8) with
the cubic transformation. i then the discriminant con-
ditions (6) are permuted Munder Cremona transformation as
their corresponding go\{nﬁs in the finite geometry are permuted
under ﬁ;%). A\, _
The transform\hjﬁibns of ?éﬂg which, as elements of g 5, reduga
to the identitywod. 2 constitute an invariant sabgroup i’ of' it
of index. t#¢~which is generated by the Kantor involutions
Gy, ---,,Jéxs"and their conjugates. The factor group f' of ¢
in gsi-has the order 8!25.36-2 (' p.337). The additional
element in i which reduces the order of this factor group
o ‘that of A8 arises from the dilated Geiser involutions
Gy, - .-, Gy which figure in the products Dy, -, Dy, These
involutions all reduce mod.?2 to the same element in f* which
corresponds in the finite geometry to Zoo. "
The cases (¢) and (d) of respectively nine nodes, ’Q"’ and
ten nodes, Qf, of a Cayley symmetroid are ==g"ela,ted in miuch
the same way as the set P{ and the set Py of base points
of a pencilof cubics on 2. The principal facts with re’ference
to the determination of these nodal sets have been given by
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Cavley'! and Rohn (*§§9, 10, 11; %% ™). The symmetroid
is the guartic surface whose equation can be put in the form
of a symmetrie four-row determinant with Imear forms as
elements. The ten nodes are the points for which the first
minors vanish. The enveloping come from any node breaks
up inte two cubic cones on the other nodes, i. e, nine nodgs
are projected from any one into the base points of a penril
of cubics. If this happens at one node of a 10- Tl{]dd].\‘\m-
face it happens at every node and the surface, )4 sym-
metroid. Any eight of the nodes arc a half“péried set.
Only seven of the mnodes can be chosen (o random. M
41, -+, ¢ are given nodes the remainm@ Mhree lie on the
Cayley dianode surface {(cf. 44) determined by Q. If gy is
fixed on this surface the dianode af:};l, v, gs» qn and of
@y s oy gs Meet in a curve of ’Gher 36 from which the
15 lines giq; (3,7 = 1,--., 6)«faetor, as well as the cubic
CUrve on gy, - - b, A%q,ﬁmg}ﬁsy‘@@ilﬁigniﬁcant factor the
“dianodal curve” of Ca)],ev The dianodal curve thus deter-
mined by the half permd ‘set @ has the order 1R, has iriple
points with coplanar\tangentb at each point of %, and meets
each of the infi 1€e number of Fl.curves of the second kind
determined by Qi in two points outside Q. If g is chosen
on this dianédal curve, there are 13 ten-nodal guartic surfaces
with nod&gr at @, ome of which is a symmetroid. Thus the
pairs OF femaining nodes of symmetroids with given nodes
at, Q’\ale pairs of an involution on the dianodal eurve of Q's
,o\TFhere is but one symmetroid with given nodes and if nine
\\‘; ~of these are given the tenth is uniquely determined. Also
(**(26))
(7) A symmetroid 3 3s transformed by regular Cremona trans-
formation with ¢ < 10 Fpoinis at its nodel Gro info
¢ symmetrotd I with nodal Qi congruent fo Q.

For, 4,55, with F-points at ¢, ..., ¢, transforms 2 into
a four-nodal quartic surface 3’ with additional nodes g; corre-
sponding to the nodes ¢; of 3 (1 =5, ..., 9, 0). Also dyess
is a quadratic transformation on the net of lines on ¢, and,
if the lines from ¢, to the other modes of = are base lines
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of a pencil of cubic cones, the net of lines on ¢ has the same
property and 2’ is also a symmetroid, Furthermore (¥ § 5)
(8) A symmetroid 18 invariant under o Kanior or o dilated
Berting involution whose Fpoints are in its nodal (.
The dilated Geiser dnvolution whose eight F-points are n
the nodal (i leaves the symmetroid wnaltered but inter-
changes the remaining fwo nodes. .
From this therc follows o\“}
(9) The dianodal curve of (i in (m es a locus of fixed pomis
Jor those elements of the group iss which wwespond to
elements of gsn congruent to the identify mod. 2 ¢ The other
elements of 15 effect on the dianodal curve Feg involution
of pairs af,k?de make up with Qf the nodes\gh v symmetroid.
Let now Qg be the set of nine nodes of A symmetroid =
The set is self-congruent and X mvarlant nnder the Kantor
and dilated Bertini involutiens dehned~by the set (cf. {8)), as
well as the conjogates,of, glgeﬂﬁy}g};w%ré)m:nned by regular
transformation with F-points within the set. These conjugates
generate the group 3,12’.5 which® correspondq to the subgroup
.3 (2) of g3 which 15\et)ngruent mod. 2 to the identity
(®pp. 261 2). The factar group 9§, of gos(2) with respect
t0 gou I8 isommp}ﬂg‘ with the modular group for p = 4
(" p. 337). Heue'é Qs is congruent to only 2%.51.10 pro-
Jectively dﬁhm:t unordered sets, Any two P-surfaces whose
signatures &g congruent mod. 2 are equivalent under some
oper. at10n§f 3!.] , for which ) is self-congruent. All P-surfaces
definediby (j are then equivalent to one of 255 types (* p- 262)
“hwh can be put into one-to-one correspondence Wlth the
\n half periods (p == 4) as follows:

P PO Puago : P(123)Y

10 .
(o Purgy : P(1¥23456)%; Pw : P(132%3 ... 8%

From the equivalence of P-surfaces there follows as before
the identity of discriminant conditions. These also reduce
t0 a set of 255 distinct conditions in correspondence with

half periods as follows:
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P12 6(1 2)0 Plgs.; : d(l 234}1 == ()
(11) Piago : 6(] 2. 7)‘ =1; Py 5(13223 9 = 0.

If now the transposition {¢ ¢, is identified with the involution
in the finite geometry attached te¢ 7; and the Cremona
transformation Agyw G, ---, 1 = 1, ---, 9} with the involution
aftached to P them the peints P in the finite geomet-ry\
are permuted under the modular group precisely as(blie
corresponding classes of P-surfaces in (10), or theforre-
sponding discriminant conditions in (11), are permuhed under
regular Cremona transformation. It is sufficiéfs” to verify
this {obviously true of the transpositions) for the g\enm ator disas
When for case (d) the tenth node of S3 added to Qi to
make np the nodal set 0%, the Kantorfipvolution which has
Frpoints at gy, ..., g4 and 1nte1rhan 88 e, ¢ and which
did not appear in the group ?qﬂd o (s, comes into play.
Under it the set ¢p \«rwqdbraulj,ﬁ %:m]r‘s congruent to the set
QJ = 1, + «+; gs, Go. Hence the“‘z 1 ETO projectively distinet
sets trmgruent to Qf are tstributed 10 at a time in 2°. 51
gets Qw, or Q
{12y 4 qymmehmc&{lm be transformed by regulny Cremont
transformatign™ into only 2° . Bl projectively distinct
Sym-mei-rqéiﬁéf These projectively  distinet types permule
under Such transformation according to the modular group
{p==4). The 265 discriminant conditions on the nodal
'Q‘f\\ﬁtre permuted like the half periods.
,l)tf‘éshou]d be noted that there arce 2, 255 discriminant con-
mfjiﬁﬂlls of the types in (11} that may be formed for Qi But
¢he Kantor involutions show that a condition of type
d(1*223 ... 9)* == 0 implies ¢ (20)° = 0 and that onc of type
d(1°2.. 7)” = 0 implies 6 (1890)! = 0. Thus there are
now under permutations of the ten indices only two types
of diseriminant conditions

(13) .Plg : 6(12}0 — U; 131334 . 6(1 234)1 = ([},

These identities among diseriminant conditions lead to theorems
such as the following:
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(14) If two nodes of a symmelroid coincide the cullic cone with
vertexr af any one of the remaining nodes and on the ten
nodes has a double generator on the coalescent nodes, If
Jouwr swdes of @ symmetroid are coplanar there is a quartic
cone with verter at any one of the four nodes and on
the remaining iz nodes.

An expression of the figure @, of ten nodes of a symmetroid
in terms of modular functions (p == 4) given by Schottky will )
be found in 59. The remaining sections of this chapter(aye -
devoted to the geometric relations which connect the m}gonal
sextic and symmetroid with allied figures. s

54. Geometric relations connecting the\ ratlonai
sextic and the symmetroid with the jacoblan of
a web of quadrics. This section cont,&mxs 2 study of the
projective relations which exist among @\ variety of figures
in space defined by a planar rational’se’xtic In addition to
the birationally 1elatedw}3(: iar!l bf a web of quadrics) and
symmetroid these fignres lliﬁlﬂl e l%har¥“aflgnal sextic curve in
space and the pair of cubie® space curves. A certain pairing
of planar rational sexticg“appears which is important for the
purposes of 56. If thé_underlying rational sextic is trans-
formed by Cremona t\ansfomatmn into a projectively different
type, the related sfigures also are subjeet to transformations
which are di cussed in the next section,

The simplest point of departure is the figure of two cubic
curves m%pace with digredient parameters ¢ and £ respectively
(**§ 49\ "These as point loci will be denoted by Ci(x), C(?);
as.160i of planes by (), C;(f). The two curves each depend
12 constants and the pair depends upon 24 —15 =90
absolute constants. On each point 7 of Cy(z) are three planes
of C,(f) and vice versa; dually on each plane z of Ci(z) are
three points of C,(f) and vice versa. The 1nc1dence conditions
are therefore
() F= (@o)*(at)® =0; F=@)@) =0

By reason of the duality the forms F, F are mutually related.
Each is the same covariant of the other (* § 3). The general
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form F' in digredient variables has @ absclute constants and
determines in turn the two curves, €4 (), €5 (f). For if the
planes of ¢, () are taken in the canonical form, 17 (1), the
points of € (r) which satisfy the incidence condition (1) are
perfectly general,

Let @y, 1), be the two nets of point quadries on €, €
vespeetively; €, (4 the two nets of quadric envelopes on O, %
lf‘\p{’{,ti\ cly. The pencils ot the net @, are the pcncﬂs on
¢ and 2 bisecant of €% the ponnh of the net Q; aze the
peneils on ¢ and an axis of ;. The net Q; Sill et
Gli,y="1,2; {4 3) in an involution, 13, of h?{‘{ds of points.
An 77 on a binary domain may be visnalize® as the line
sections of a projectively definite mtmml\phue sextic, The
nets ) (g thug determine a tetrad of 1¢L1@nal gexticg, namely:
N (7Y, whoese line sections are cut dubon €} () by the net Gy,
S, (13, ent ont on €, (f) by the nety Ql, & {2), cut out on (7
by the net (J,; and W{Jﬁlbb&ﬂlﬂlﬂﬁl@ &gy the net . The
]‘Jﬁl{lmf‘tf‘lw. f, ty, of a node\of 8 (#) are a neutral pair of
1) whence the points Ty it o"r"f 2 (#) lie on a pencil of the net
) aud ‘rhm efore lie 01 {l\blsf‘(‘dﬂt of €7, 1. e., a common bisecant
af €4, ¢y, C nuveu&{\ 4 common bhecant determines a neutral
pair of I> wheneedsf. 1,312 for references to original sources):
(2 The umrx Cl, (% have fen common bisevants which deter-

mine oy, Oy the pairs of nodal parameters of Sy (2), St ()
}fyw;be?‘j ducdly €y, Oy lave ten common qxes which
(Zcﬁ:\}mw on Oy, Cy the pairs of nodal paramelers of

QS*I '(r), S, ( (#) }pspfrfawh;

~“If. one planar sextie, S,(#), is given its line sections de-
termine on C;(#) o hexads of points cut out by a net ¢
each member of which is determined to within members of
the net €,. Thus a system oc® is defined which is apolar
10 a web  of quadric envelopes. But Reye® has proved
that in the system apolar to a web Q there are precisely
two nets ¢, (3» which are on cubic curves (), (. Hence
(3) The rational sextics of the plane can be arranged in tebrads

8y (), Se(t); SL(@), Sp(t) in such wise that given any one
the other three ave projectively determined.



54. GEOMETRIC RELATIONS 937

In such a tetrad the two in either pair will be ealled
paived sextics; these have digredient parameters. Two with
like parameters, ¢ or =, will be called counter sextics; these
in the space figure are of dual character. Any other pair
will be called a déagonal pair.

The line sections of S;(#) in a plane = are in projective
correspondence with the quadries ;. In ¢, the cones oy
€ (¢}, in one-to-one corrcspondence with their verticess .
form a guadratic system. There is therefore on & g cbnic
A (z) whose lines correspond to these cones. Te.fa ‘pencil
of lines in s on a point p there corresponds qmﬁeﬁcil in 6,
which contains two cones correspending to tlletwo tangents
of K() or p. If in particular p is a ndbde of S;(f), the
pencil in @, is the peneil on a commah bisecant of (), C;
and the two cones have nodes at gy, the parameters of
a node of the paired sextic, S (). -Hence
(4) GHven a rational plowe -d@f@'y}i&%(ﬁf,@fig?memists 1 ifs plane

a covariant conic, K(z), Soch that the ten pairs of para-
meters on K () of thelten ‘nodes of Sa(8) furnish the nodal
pargmeters of the .;:gm}éc 8, (), Conversely if with veference
to a norm-conic, J(z}, we mark the len poinis determined
by the ten peiry of nodal parameters of a rational sextic
8, (%) then dthede ten poinis arve the nodes of another rational
sextic 6:,;(‘@ which is the sextic paired with S (z).

It m@\\:b\e‘iemarked that only six pairs of nodal parameters
of 8y (&} ?_\Vith 9 absolute constants) can be chosen at random
and&thht then five sexties & (z) are determined (*' p.316
of Yalso 56). In the plane however eight nodes may be chosen
af random and ome degree of freedom remains for the choice
of the ninth. In the first case a choice of K(z) is also
implied. The relations between the binary conditions ou the
nodal parameters aund the ternary conditions on the nodes,
which for a single sextic would be quite complicated, arc
quite simple for the paired sextics.

The sextic S, (¢) and its covariant conic K (z) are so related
that a tangent = of K(z) cuts out 6 points ¢ of Sy () an.d
a point ¢t of S;(H is on two tangents z of K(r). This

Q"
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(6, 2) relation in ¢, r is obtained from C) (z), 4 (#) as follows.
The condition that plane = of ¢} Is on point ¢ of ¢ is
(wr)® («t)* = 0. The pencil in ¢ on ¢ of C, contains the
two nodal quadrics with vertices at 7, z,, the meets of ()
and the bisecant from ¢ to (. Then +;, v, are the hessian
pair of the three planes of €7 on t, i. e. the hessian of hgh

eubie (@7)® («#? in z. Henee A

7

A

- . . . . . N

(5) The parametric equations of the rational sexticsaf~the
tetrud (3) veferred to their covariant conds. K{f), K,
as norar-conics respectively e e\

(et (et (@' 1) (az)® (u'2)? .—_“-_’:}\(),
(ra? (nr) (6" ) (@) (o DR 0,

(@a)? (w0) (@ (@) @7 == 0,
(e a")® {az) (¢t} (a?l:i’:(a' - 0.

it may be proved casily (c_f.,’*{ p'iy. 158--H4} that:
(6) The forms F, }W\gf?‘{-‘{]f'ﬁ%éﬁﬁgéﬂf&}f} divert wnd Thverse
linear transform aia’om*hf the parametric coirdinale system
in space detemm’nc("?;y € (1) into that deternined by Cy (1.
Specifically, the goint and plane determined by {ez)? with
reference lo \S are the pomt {acy (« ) and the plane
(@ e)® (a Ogbalh reference to Cy(t); the point and plone
rZeie?'m-‘e}w}E\ by (7 6 with reference to Cy(t) are the point
(0 T}W{f}]“ and the plane (a1)® (e y)® with reference to Gy (@),
Lt;j;%\,“ ty, ts be three points of the sextie, S (f), on a linc.
"Them there is a quadric ¢, in ¢ on the poiuts f(, fa, of
MQQ\(f) which with the net ¢, on (5 (f) determines a web which
Ntneets the plane #, 4 , f; in the net on these thres points.
Hence one quadric ¢,--¢. of the web contains the plane
4, 3, {». This plane meets €, (z) in three points z;, s, &
which also are points in which the quadric g. of Q. meets
. (z) whence 7;, 7., 7, are three poiuts of the paired sextic
5, () on a line. This mutuai relation between the two linear

triads must, according to (6), be as follows:

(1) There is a one-to-one correspondence befween the linear
triads on two paired vational sextics; if (7 113 is the linear
triad on S; () {8: (D} then (av)*(ay)*{(@0)®(zy)’} i the
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liner triad on fhe paired sextic S, (%) {8 ()} if (co)® i
the linear triad on 8y (2)[S,(2)} then (c7)* (& £ {{ca)®(ety)
is the linear triad on the paired sextic Sg(t) {8 (D).

A particular plane =, of €| is cut by the ac! planes of ¢}
in a line conic which is to be identified with K {z). A point &
In 74 is determined by the two tangents of K(r) which arise {
irom the two further planes r,,z; of €, on z. These two
planes meet in an axis {; (x = 7,, vz) which cuts 7, i{i\x\
Thus the congruence of axes [, of € determines a projeetive
correspondence among all the planes of €7, Accor&mg‘ to (6}
the plane ¢ of C»(#) is the plave (a2)® (e £)* feferred to
(' (z) and the point x = ¢, 7z, 2, is ofis‘this plane if
(av,) {(a7s) (aty) () = 0. Hence the planes ¢ of ¢, cut
each plane = of €} in & rational cuhic'\éf ines

&) Grx)lar) (1) = (a7) (tsrs) (@¥) (@t (&=,

Nelecting a fixed pimemdbﬁ}ﬁlﬂlba&y&a@qn the o' (for wvari-
able 7) rational cubic emelvapf-% () on the o' planes ¢ are
projected by means of the axes l. to form in 7, a falmly
{(with parameter ) ?f\'bl rational line ctbics (with para®
meter 7). Since forifiXed ¢ there is one axis Z. in the plane ¢
of €5 which for v;;l%b]e  is met by all the lines (8), it follows
that the oublq enrves (2) in 7, are all perspective to the
rational cupye (i, e., line ¢ of the envelope is on point ¢ of
the rat (m‘al enrve) eut ount on 7, by the oo’ axes of €} which
lie in ~ﬁ}aneq {of €L, Since for given f these axes are deter-
leed by the quadratics, (ae) (a7) (¢'0) (2 )* (') = 0, this
“pational curve is the sextic Sp{f) referred to its covariant
\comc K(r), In particular the ten common axes of Cj, .
which are on two planes f cut 7, in the nodes of S,(f). Hence
(8) Upon o plane ©, of Ci, the axes of Cy which lie in the
planes of Cy(8) cut oud the rational sextic Sy (8), the ten
common azxes of Cy, Cy aud out the nodes of Sy (1), the planes
of Cy cut out the covariant conic K(z) of S (1), and the
planes of Cy cut the ot planes of Cy in o' rational cubic
envelopes wlich are prajected wpon To by the congruence of
axes af €, into the o perspective cubics of S ().
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The geneval form (8) in digredient variables . (Lernary),
t, v (binary), has 23 constants and 25--2—3—3 = 9
absolute constants,  In terms of its coefliclents the parametrie
gquation of S, (/) is
(10 (22" E) (') (e ¥ (e £)F == 0,

'\
One may prove farther (** 59 Ll)) that
(11 The trigds ¢ of cusps of the =1 perspective cubic ua,u:?opee (8)
of S (8) v over « seetic cirve of genns four b:mrmnaé’h
equivalent lo Fre=0 in (1), and constituts & ¥, e the
canonicel ¢S, The vesidual ¢} is o syste m\of frigngles on
the suvtic whose sides envelop N (r).

The torm (8} for given x and « nunmlxu\\rhe three tangents {
of the perspective cubie « of 5, (f) & heh pass through z.
If however « is at a point 4 oW, (#) then one of these
tangents is ¢ = £ for every wmand (f#) is a factor of {8).
It 2 is at z;, one mwﬂléblﬁﬂllhmqmm(f) with nodal para-
meters (g ), then
012} (o) (av) (e« )° E (i'a’) (L) gty (e=—1,---, 9, 0).

o‘ ‘
On each point of*aScommon axiz of €, €y there is a third
plane ¢ of £} afid ¢ of 4. As the point runs over the axis
the (1, 1) refafion between these planes v and £ is (4 0){7; ) == 0.

Let ag! ‘Pefore @ be the web of point quadrics apolar to
the t\(@\mgt% Q., @, of quadric envelopes on ), Cv; @ the
w eb,{)t guadric envelopes apolar to the nets ¢y, &s. %f_u;rdmg

_othe usual theory the jacobian J of the web @ is the locus
\hié nodes of quadrics of the web or the locus of pairs y, y
of points apolar to the web. These pairs He in an involutorial
correspondence 7 on J. Let the net () on ¢, meet Gy (1)
in hexads 4, .-, & of planes of the involution 1Y eut out
on S (1) by lineb of the plane. Then the entire web @ (y)
will meet €y in sets of 6 points in the involution J; which
is the conjugate of (or apolar to) the 75 and which may be
visualized as the plane sections of a rational space sextic
curve B(/). Tor, Q) is apolar to ), and thercfore the
polarized quadrlc.s of Qy) will be rvepresented on €, by
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polarized sextics; and Q(y) is apolar to @, and therefore these
sexiircs are apolar to the sextics cut out on C: by @, i.e.,
to Is. Now the linear triad &, &, % of S,(2) ean be supple-
mented by a triad 4, &, £ to form a hexad apolar to 5
whence the p_qlars of the triad ¢, 4, & as to four independent
members of I will be lincarly related, or the triad will be
apolar to a unigne hexad of Iy cut out say by ¢ (). Then
' () can be represented as a sum of squares of the three)
planes &, #s, f; of C; and has a node at the point y(#, }fg\, 1)
on these three planes. Conversely if @'(y) has a @ode it
cuts €, in a hexad whose catalecticant (the qis\ctiininant of
€/ (3) vanishes whenee @ () ean be expressedlas a sum of
three squares of planes {. Moreover the)quadric of the
net ¢ which touches two of these plane ‘Wlist touch the third
since € is apolar to @'(y) whencexthe plaves #, 1y, £5 are
a triad of a hexad of . Thus J i§the locus of points y on
planes #y, &, ¥ {71, BewsndobaGfiaG frg.avhere 4, &, &y and
7,, s, T, satisfy the symmetiic® conditions,

(13 A6 6 L8, S an =0,

which express that & ;5-2,_;‘3 {#,, Ts, %] are & linear triad on
the rational sexti¢ S, (6 {8, (z)}. Moreover the two trihedrals
t, by, ts and (s, s on y, being self polar as to Q (o), are
six planesseiva quadric cone ¢'{y) with vertex at y. Con-
verselysf i a point for which the two trihedrals have this
properys then, of the o quadrics € on'ey, 7s, 75, OnE is
01;1‘\1;.;"13! and therefore contains all the planes of o (y} in-
“Cirding f,. Hence
14) The jacobian quartic surface J i the locus of points y
Jor which the two sels of three plames of Cy, Gy on ¥
are planes of a quadric cone ¢ (). The two trihedrals
on Oy, Oy corvespond to Hinear iriads, paired as in (T),
on S, (23, Sy (F).  Referved o Gy (&), or ta Oy lz), Jis an
smvolulion surface with equations (13).
By the term involution surface is meant a surfac
parametric equation when referred to a4 nOrm-cury
equation of a binary involution.

e whose
e is the

1
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As noted above there is one quadric ¢ of the net
the planes ¥, 7o, 743 f1, &, & which contains the planes of
the cone ¢ (). Similarly there is a quadrie ¢ of the net @,
on the same 6 planes and cone, Each of the quadries ¢y, g also
contains the planes ., 14, 145 Iy, b Ay and the cone ¢ (y)
on this second set of 6 planes. But if two quadric envelopes,
have two quadric eones in common a member of their pgncil
factors into the product y, 4 of the vertices of Lhe\mnek
Hence ¢, ' are corresponding points of 7 on J wnd the
corresponding linear triads on cither rational $eXtic make
up a linear hexad on that sextic.  Thus if,doW 5, (), 4, t
are nodal parameters on a line with £, #3,\5% Jf; then as the
line revolves about the node the point go(fr, £ £) runs along
a common axis .; of h((} f1(7)\(m 4 and the point
y (i, 15, t) TUNS over a cubie curyeA; onJ. The carve N;
is the involution curve determinad."by mads referred to G
which are contained . 'ﬂhtﬂtﬂibﬁﬂy eng.imn N, {7) by lnes ou
the node. If 44, ¢, are the pt}mmetela of dnother node, Ny meets
the axis A;(f, ,) of CgNn the points o (£, 71 £ oy £ 7o)
and 4; is a biset:;i.ng"'(g\f N Hence
(15) There are Lutksystems of o 6-plunes, one on each of the

(rves (;[,()_Tg“, inecribed in J, Euch point y of J deter
mines anelB-plane of either system and these tieo Gplunes
alsa Hi@pe dn common the opposite point y' of the 6-plunes
whs@e (or?esponds fo y wunder I, The len commoi tees
by af Oy Cy on J correspond under T fo fen cnbic (?r?wﬂ NG

N such that A; is a bisecant Gf N, j=1,~,90: 7}k

Let the web of quadrics Q@ in the S; () of J mth dual
cofirdinates ¥, ¢ be given by the double guaternary form

(16} (ey) (Bz) =

with 2, § dual codrdinates in another Sy (2).  The form has 40
coefficients and depends upon 39 constants or 89— 15—-15=:9
absolute projective constants. For every point z in 8 (), (16
determines a guadric in S(y) and the locus of points z for
which this quadrie has a node y is the symmetroid

L3
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(17) S=BHF 5B HE" ) (e " a") =0,

a symmetric four-row determinant whose clements are linear
forms in z Any stch detcrminant may Dbe regarded as the
diseriminant of a quadric (16). For point z of ¥ and node y
of quadiic (16) the equations, o\

(18} 0:1{(5‘3}) (B)=10 (i :‘-}11‘2.\}Qf
. e
A\

are simultaneously satisfied. On climinating » we liave

(19} J= (B8 88" (e’ " Y {ay) (< 3) ((‘cf.i&‘ﬁ[“_;c"”g) TR

the jacoblan of the web (18). For corpedpduding points 4. 4

of J under f the equations, M

{20) Biley) (e ) D0 (7 =0,1,2.3).

hold simultaneuuslfwwE%tf‘r%ﬁlx-bgﬂl{- o3p 'ﬁ’&ing points on 2.J
the equation of the ]1[@11@7;;"13
(21} (82) (8 Z} i(»?ﬁ’g P} (e e 8)? == (g4 == 0.

K™
A point y désermines in (16} & plane £ but & on points

21, 2%, &8 ipndétermined by any one of the 8 hase points y
of the net™of quadries («p?(3:) =0 (=172, 3) o 4.
Thus«({8) “defines an (8,!1) correspondence between poiuts y
anﬁl,j'ﬁ}anes ¢ of the spaces of J, . If y is on J oue of
she ‘three quadrics of the web on y has a node at g and

<\;t:\’§'0 of the & points corvesponding to ¢ coincide av y. If
#° is the point of X which furnishes this nodal quadrie then
the square of y is furnished by (21} and this substituted
in (16) yields the plane { which corresponds to y in the
form {82z") (8 2% (8" 2% (") (aa’ e ey =0 which is the
tangent plane of X at the point z% which corresponds to y.
Hence J is mapped by (16) upon the planes ¢ of = If &
is on z, #, y‘is on a quartic curve which meets J in 16
points, i.e, X is of class 16. Ten guadrics in the web (16)
are pairs of planes whose nodal lines are the axes A; on J.

105k
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There are therefore 10 points :* for which (21) vanivhes

identicaily and at which the tangent plane of X is inde-

terminate. Hence

(22) The points of the jacobion surfuce J arve mapped by (18)
wpone the plones of the sypmanctruid of oluss 16 and order 4
s swrh wive that point y ond contuct 2 of tangent plone\
corvespond in (18).  The ten fines A; of J map intoadie
plunes of the ten tangent quadiie cones of X at, {?ﬁ;"’tzn
wodes, 7. 6., the lines of J rcorvespond fo the _derections
o 3 al its nodes. O3

Undex the birational transtormation £ in ,(}8} ‘between J
and X a quadrlc section of J by (04 cardetponds to the
gsection of X by its enbic adjoint 51111(1(0\’

(B (8 2) (8 ) e « ’d}x‘ == 0,

The sectmnx of J by plr]ﬂ’ ~cl}l]9‘~p(m(l on X to a linear
W W Lau rgl
system Iy of order 6 an genas on the nodes of X which

are contact earves of the eabic adjoints
{(82) (ﬁiz)’\fﬁ“ Hilee "N -0

whence on every Fﬁue section st of 2 there iz isolated a
N . r - B

system of contapt’cubics. The linear system Iy is eut out

on X by thg\'fiﬁear system of adjoint cubics

\(B""} (18 () (,3 a)(ftt:( ! r) (fxu m _,-’) =0

for v(mdble i and fixed 5.
a8t is a plane section of X determined by points z, 27, &7
\Umn tle three quadrics (o J)2 (82%) determine a net and the
involutorial Cremona transformation of pairs apolar to this
net l.e. I on J) is

(23) (za'e5) (BB D) (ay) (o y) (e y) =

The fundamental sextic curve of this involution, the locu%
of nodes of the net, is the member of the linear system U
on J which cone%ponda under B to plane sections of 2

Cubie surfaces on €% cut J in a residnal system c'h Of
sextics of genus 3, the transtorm of plane sections of J
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under I. For given sections { of X and 5 of J the cubic
surface {23) cuts J in the curves (%, '8 which enrrespond
to c., y under B, I respectively. Hence if { COPPBSpOHdb
to (5 on J under B and 7 correspends to I's on Y under B
but to ¢’} under I then for given { (23) is a cubic Cremona
involution which on Jis 7 with fundamental curve 3 where- £\
as for given » (23) is a cubic Cremona transformation ofa
into X which has ¢'§ and I} for inverse fundamental cufves)
The inverse transformation is obtained from (21) in tlfe \form
(B2)(8'2) (B"2) (we & g) (e &' 7') =0 for fixed 4™y Thus
on any plane section of J there are isolated t“\o\cone‘udua]
linear series g8 cat out: respectively by theunear systems
Cy and '3,

The points » on the two cubic cur & Ol (=), Co () corre-
spond in (16) fo the planes { of two, ratlonal sextic envelopes
R, (z), By(¥). The planes{ of thebe enrves on a point z are
given by the paramew%@bmmwls{g} “jich the quadrie (16}
cuts €1, €, whence the CHI’VES kR, (z), R)(t) are the space
curves conjugate or apolar to0 S, (2}, Sg(f} respeetively. The
symmetroid = is the loaus of points z for which the quadric (18)
can be expressed b\& ‘sum of squares of three planes of Cy,
or three planes of\C; (these planes themselves being represented
by perfect Cltho), and therefore is the locus of points z whose
point qe('tmqa of B, (z}, or of Ry (i), are expressible as a sum
of threeixth powers, or ave cafalectic sextics. If howevet z
is a n%‘e of X the quadric (16) is a pair of planes 4, ioon
a commun axis 4; of C;, Ce. Since r,f, ¥ is apolar te the

'net Q,, and the net Q2, the planes 7, 7' are harmonie to the
\pd:rs of plancs of ¢} and €, on 4; and the guadric can be
expressed as a sum of squares of either pair of planes. Hence
the sextic point-section of E,(z), or of R, (D), from a node
of X is a eyclic sextic, 1. e, a sextic reducible to a sum of
two sixth powers of linear forms. The linear forms themselves
determine a pair of nodal parameters on the conjugate plane
sexties 8, (z), &(#). The catalecticant of a binary sextic is
the particular symmetric four-row determinant for which the
elements in a line perpendiculax to the principal diagonal are
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all alike.  Comner® shows that 2 ean be transformed into
such a symuretrie determinant in just fwo ways eorresponding
to K (r) apd £ (7). These two rational =pace sextics are
conjugate to the prdred planar sexties S (0, 5 (7). Unlike the
panar enrves the one spice sextic 1s localized when the other
ix given since ench deteymines X, ~
Let (g2)" be a linear pentad m S, 00 whose carier mebgs
No(#y again at £, The polar of (41" as to four mdt,]wmbent
point sections of (1) is o (H) (7= b ) cll}lfs,'\_f} f)° i
therefore apolar to three i11{]e-]>(=.ml<=nt pnin‘r sectitng ‘of Rg(f)
and thus to all the point seetions of A8 by poifiof a plane L.
The loens of planes © thus determined by the_r}:? linear pentads
on Seff) is the Stahl (% p. 563 geradric B of b1, For, if . {H
for the moment is taken as (87) {f;r)" A (he condition that
the three sexties (89 (W1 = 0§ } 2, 3) have a connnon
apolar quintie is of deﬂlf'u WOy B cacli 27 and these can
geenr only as £ g d]ﬁ;@‘ibmry bganlinear pentads (g tr,
(g ) of S, U) with the mllIli‘ wixth peint ¢, which determine
plancs o, & of A, are .apuhu to point sections of () by
points on the line 5§ .~\’T‘ho vquatmn% of & & are (82 (bg)® (06
=z - (th) ane\ﬁp‘ )(hq (hh - e(z)-(14)y. Hence the
variable linear phutads (g )"+ 4i(¢'6;° on lines through a fixed
point #, of ${) determine a. peneil of planes ¢(2&) +Ao(zd)
on K, nec&;man]\ a peneil on a generator # of K. Again
for givgy in (8) the line 4 of the perspective cubic of Sy ()
clisy ‘1‘\({._ in #, and a linear pentad of the form {cf.*§ §5(5)
FOSE, Y = (¢ Then (82) Gy’ (08) = £ 2, 6)- ()
‘;md the plane (2{) of K is linear in #,. and fov variable 4
turns about the generator « of K, Hence
(24) The planes € of the Stahl gquadric K arve in one-to-one
correspondence with the linear penfads of Se(8). As &
twrns about a ¢ generator of K, the varicble pentad of
8, (1) turns about the point £ of Se(f). As & furns about
a T generator of K, the pentud of Se(8) runs over the
lines of the perspective cubic enuvelope © of Sp(f) in (8).
K Las o similar relation to & (v) with the roles of the
genaritors reversed.
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For given = the linear pentads, f{°, +', £ J7- 0 onthe lines ¢,
of the perspective cubic ¢ are apolar to the pencil of HE‘{tIC
point sections of points z on the generator = of X. This
quadratic system (for variable 4,) is in a net of binary quinties
whenee the pencil of sextics consists of the polars of a binary
septimic.  As 7 varies this septimic must lie in a pencil

(25) € ) = 0 .
sinee the polars <\
(26) (c?) (rt) (1) = 0 O
must be incladed in the lineayr system (%) of pomt bf‘ctlﬂn‘:
of Ry(#) {cf. (a) below). R

T 4, .., % is a linear hexad ¥ of S, (f).she three pentads
obtained by dropping 4, 5, # succeqmel} determine three
planes £ of X which meet in a point s’\(éi, ty, f3). The point
section of Ry(?) from z is apolart0ovthe three quinties and
therefore is apolar to their comaién triad #, %, 4 and is
a ecatalectie sextic.wmrzihﬁmmﬁf&aijgintgmﬁ the symmetroid =
which correzponds to y(t];.tg, f) on J. From the existence
of the oo® line seetiong~ of '8, (t) each containing six pentads
and the similar bc}m\\wr of X with respect to the paired
sextics, S, (z) and\ﬁe %), there follows (ef. (15)):

(27) There arefwo systems (0%) of 6-planes civaomscribed to
the ,Stcglz-& gruadric K and inscribed in 2. Then K is

o rogignal covariant of X being part of the envelope of
Plafss which ent 2 dn L?‘érotk quarties (with inscribed five
{%es) A point z(h, &, tg) == 25y, 7o, w3) (. (1)) of =
‘Mongs to a single 6-plane o_f each system and these two

~ - p!anes have also their opposite pama‘s 2ty 15y 1)
= 2 (1, Ts, Tg) t0 common where 2, 2" ave dmages in the

involution T on X which corresponds to I on J.

In this and the following sections certain theorems, indicated
by letters, which refer to the confignrations introduced ahove,
are given without proot.* The first group of theorems relates
to the Stahl quadric and the perspective curves of S (B,

* Proofs of these theorems will be found in a secoud article by the
author under the title: Geomelric aspects of the abelian modular functions
of genus four; Amer, Jour. (19200,
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(2) The form(26), the polur of (25), is theequation, (hz) (8£)%==0,
of the rational space sextic envelope RoAdy when the poini z
i veferved to the Stald quadiic K of £05(f) with generators
tad = L.

Thus the general (1, 7) form (28) with 16 coefficients and
15 constants or 156 —3—3 = U absolute constants is sufficient
to determine plo]emwh R, () and therefore the entive Lons
figuration of J, X and S.{). ¢\ \
(b The catalecticant of the sextic (26) in 1 /s, fm ) A
a form (en)t (ef)* which fuonishes the cquationyim K nf
the octavic rwrve of intersection of K H‘éﬂem{.'\" For g.ii;e-n. T
in (ex)* (e) = 0 the quartic o0 t withxobls by, «- -, & is
the linear tetrad on Se(f) cul ouwl fhg( e dothle fn;m;mt
(with parvameters 4, &) of fhe pm&um eahic (8) of 85 (1),
For variable v this double tangpart Yof the perspective cnhic
envelops a vational cwrve {”"h) of cluss 10, Through
a point t af Se(&}“ﬁmﬁrﬁm@ﬁw&gﬂ‘nl”‘ (1) condain a set
of 6 for which € is iny f?';f’ pair f, b and o <ot of & for
which t s in the tefw ald by, -, b5, dhe fmw«pmarh'?w 6
and 4 rvalues of rmmlo determined by (e o'V (&) (1) (0 )
(@0 =0 (cf%f (@)Y and (e (1) = 0.

The only Zeném tetrads of Sy (t) for which the four poinis

on their: Jige are projective to their four parameters on

8, () am"ihe Jour rvesidual points ty, .-, 1, on the double

tan nts 1, b of the perspective cubics of Sy(¢). These

je}fa}u s are furnished by (ef)* (ex)? = 0,

@NThe locus on J which corvesponds to the infersection of K

N with 2 is the transform wnder 1 of the locus of points
Jor which q'(y) in (14) breaks vp into fieo pencils of planes.
These are poinis y af which the wris oj( in the plane =
of Cy meets the axis of Cy in the planc t of Cy when 7, t
satisfy (er)* (e£)* = 0.

(e) The system of perspective envelopes of ng ) of tlass m+-3
corresponds 1 (1,1) fashion fo the system of curves on K
of order m=+1 of the form (k7) ()™ = 0. The egnation
of the system of perspective curves s (5t 2y (ak)(ad)® ()" == 0
{cf. (8)).

{c

—
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The next group of theorems centevs about (15) and (22).
We recall that, at the end of 52, the binary guadratic
g1 ... 9 0™) was defined to be the pair of parameters f
of the two peints in which 8 (7 is eut by the FP-eurve,
P 9% 0%, of its nodal set P outside of the inter-
sections at the points of P, Thus the nodal parameters £
of S;{f) are ¢(1)%, ..., ¢(9)°, ¢(0)®; the parameters of the
pair of points cut out on S;(¢) by the line p; pe are g'(.(i;‘)‘.;\
ete, These pairs will be distinguished from the like-twined
pairs of points on the paired sextic, S, (r), by thé”{l’ﬁditiml
of the parameter ¢ or 7 as the case may bé@ Thns the
parameters of the ten common axes 4; of Cn&), (8 on J
are gli; ) and g(s £ The parameters » and ¢ cut out
on 4; by the third plane of € (z) ()I\C* {fy on a point of
Az are related by the projectivity, At (1 7) == (J in (12).
(f) The cubic curve Ny on J s cul by Bie qzes Aj{j =9, ---. 9, O}

in pairs of pomﬁsmdﬁ:ﬁmﬂg@fﬂsy«@@lrﬂ are g(]j, r‘-)l
whose pavameters v are gQLf; ©), the paramelers £, 7 hrin‘r;
connected by the prqiec!éi:ﬁiy Aty (liz) =0 4n (12).

(g) The 45 quadratics 55 1) and the 45 quadratics qlij; o}
arise from the fy common solutions of the 45 pairs af
projectivities, s 1) (ht) = 0 and () (Ge) = 05 doe
glis; t)‘ ='(31:s"t) (s O (1) and glif; o) = (A (o) (4 7)
(1. J ==+, 9, 0).

(h) Th 57‘nf<' of an axis A; on J corvespond lo dévections at the
J&mﬁ%‘%g oj =, tk(’ curve Ny on J corresponds to the rationn!
ortaw mion X cut out by the guadric M; on the wine Hotlus
oﬁm ﬁean Dy, The polar of Dy as lo the Stakl quadrie K
cuts K in o wmr: section whose equation on K is (H(Liry=1.
The octavic m3 with parameter 1 {or ) has for wodal
parameters at D; the quadratic q(ij; ' (or g(ij; ).

These theorems are used in the next section to detevinine
the behavior of the paired sextic 8 (z), the jacobian ./, and
the symmetroid X, when the sextic Sy(¥) is transtormed by
Cremona transformation into a congruent sextic. The account
oiven in Meyer's Apolaritat (™ §§30, 31, 32) las contacts
with the exposition just given.
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55. Associated Cremona transforms of the rational
sextic, symmetroid, and jacobian surface. \We cxamine
in more detail the parameter distribution on the curves N
deseribed in 54 (f), (g}, The involution 7} cut out on h:_ ()
by lines on the node p contains telvads £y, £, £, 40 such
that the point y(& 440 on N, has the paaneter #== f,,
The planes - fy. - -+ b of €58 are the faces of a tetpa-
hedron circumseribed to €, (F) with opposite vertices indepibed
in .\, at ¢ fur oo o Thus Ny s an 7 {'.111‘\'(:-'—&L:}Llli'\\’itz
ewrve (tp. 315, [D—-of (,(H. The axix of (L@\6n planes
ta,  OF (%(f) is a Dbisecant of Ny on points f¥. In par-
ticnlar let the line on the node pp of So &N Ppass throngh the
node pe. The tetrad £y, ---, £ is themwNg(2; 7. 412 O
Hence the axis ¢(12; 8" of (4(f) is flie biseeant 4{2; H° of
N, and from symmetry is also fhODisecant 4(1; H° of ;.
Bue to the like behavior of .t.li@' paired sextie N (r) with
respect to the “-W{irwﬁ’ébn‘éuﬁ'iﬁ;aﬂ%{lnﬁé!f‘n curves Ny, the axis
q(12: )" of € (r)-is a comimon bisecant of N, and N, with
parameters g(2;7)° on M ad g(1; 71" on N,. This axis
g(12: 1) of € {r) ..Cﬁl not coincide with 4(12;#)" of €3(1)
since the ten con{iﬁoﬁ axes of (1 (2), €51/} ave the axes 4.
Hence
(1) I o eaddnf the cubic cvrves Oy (2), Co (1) there are marhed

the f@i:b\:t“f)?}?-}lion axes A¢ as well as respectively the 45 axes
Q(,Qj}%')l and the 45 wxes q (77 ) then these wres include

AN the common bisecants of any two of the ewrves Ni
..\'f “Hose belonging to the pair Ny, Nj being the wris (@7 1)
W of o (D), the axis qlij; )Y of € (1) and the eiglt common

ares Ak 4 4, 9) of CL(), Co (P, These ten hisecants of
Ni have for paramelers t on N; respectively ¢ (3 1)°
qfis 0% qUk; O where parameter v ds converted into
parameter ¢ by (o) (41 =0,

The two lemmas which follow arc not proved.

(2) If two cubic curves Ny, Ny in general position ond 8 of
their ten common bisecants 4;(j = 3, .., 4, 0) are Eery
there is a unique quurtic surface on N, Ny and 4; which
is the jacobian of a web of quadiics apolar fo o wIgUe



5. ASSOCIATED GREMONA TRANSFORMS 251

pair of atbic curves €y, O Jor which the A ave common
axes and Ny, N» are Hurwitz awves. The pairs Ny, Ny
and Cy, Cy are mutually but dually related.

(b) A planar rational sextic is uniquely determined fo within
& projectivity when fthe pairs of parameters of eight nodes
UFe GEReR.

If H;, H; are any two cubic curves in general position, Let
(H;, H;) denote the rational sexiic whose nodal pmarckf-ths
are projeetive to those on A, of the ten common hiseeants
of Hy, Hy; and (H,, H) the rational sextic wHosé nodal
parameters on A, are those of the common axcs- of Hy, H,.
Consider then the rational sextic (N7, Naw\VEight of the
nodal pairs are g(1k;8)'(k=3, ..., 9,0)(cf. (1)). 'The
Jonquitres transformation Jis of order Q’vith simple F-points
at pg, + -+, po; 4-fold F-point at py nd ordinary point at pe
transforms & (£ into a sextic elght of whose nodes are
g {ll; )" and this graua&wguﬂﬁfgpshgggm (b) must be pro-
jective to (N, N3). Since @y 'is an ordinary point the trans-
form has a node ¢(2; A" as is the case according to (1)
with (¥, N,). The tran‘sform also has the node ¢ (1°3-..90; #)*
and this accor(hm{\to (1) is the transform of ¢ (2; )" by
(4 v (4;6) = 0. Mence
(2) The pr ajep(w?ty (L 7) (A ) = 0, under which q (1j; )" and

q(j; NG =2, -, 9, 0) correspond, sends g (j; 1)’ indo
g 5:2\3’--, F—1, 741, .- 90; O and q(1; 1) inlo
7 % ... 0N and vice versa for q(j; O and q(1; )"
Thc last thtement will be verified in a moment. Consider
"n@w the paired sextics (X, M) and (Ny, ). Let I\l,j\ )
\be regarded as the given sextic, the bisecants q(18; 0%, .

g (1¢; i) being looked upon as nodes pi, --+, po; the bisecant

g(2; #)° as the node pz; and the bmemnt q(l 3 ...00,0

as the node pl Then .Ji » transtorms (N5, Ne) bd(-k into S % (1),

the nodes p} of (¥y, Ne) passing into the nodes p; of & ()

(=1,2-.-,9 0). The transformation J2 1 with simple point

atp, then transformq 8o (£) into (Ne, Ny) with nodes py, s, gy o o

corresponding to bisecants ¢(1; #) O g (2%3 - 0: ) g(23; i)’

g (20; ). But the bisecant ¢ (2; /7 of (M, ) s the blsecant
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i1 1" of (N, Ny). Henee (N No)is transformed into (AL, N),
in such a way that correxponding nodes pass into cach other,
by the transtormation Jra J, followed by the transposition (12),
If we set f, - .}f’l:, Jj’!l(lz‘) then i the notation of 53 (1)

1 1 b
] E} PN .....__'

B e d0 2 16
194 15 -8 =GN
1,40 —24 —15_ €310
S 1 —10 ——5’~3«.—:5_, —4
Henee ¢

17 _]2 '_“'—L : _[l,| ,’},_,:
112 —8 —3 ’
90 =80,

YN

(4} Trwo pafeeid sewties are vongraent st (\;rmrmra ANTHTES
Sovmution.  The beansfornation 20w fﬁiums_{m WL A riren
sortiv into its paived seitic wih puig@datotes correspomding.
The Tacl: of symmetry i the 0QE plodes disappears when
the integer coeffleionds of h’] s'-fa»"r;m o v rediteed niod, 2
(ef. 52 (). www.dbr aulj,braly org.in

Two xexties paived with $av 1hird are projective to each

other, 1f /) transforms S, pito N7 and R L transforms 8 into 87,

then N and 87, (-ongx,&enf under f2, 7. must be projective,

This 1s verified by e fact that the product Ay £, in (3) has

coefficients which ate congruent mod.2 to the identity. The

form of R, in38Y verifies the behavior stated in (2) of the
imadraties, ﬂ;.&l}ld(}]‘ transformation from &, (£ to its paired

<extic Jf 0)

Welhave observed that the sextic (N, N} has the follow-

Jng\ wheme of nodes and uodal pavameters:
’\

\ F; y J“E_v _{a‘.‘f’. - Tty f)(fh

A\'.;\:J: F . .
(VN e 00 a0t g(18: 00 e, (105 '

and that (N, N,) is the transform of S, {(fH by JPw. Similarly,
after an additional transposition (28) of nodes, the sextic
{7, ) has the scheme:

(M), %)
' o P e R
g2 008, B35 0% q(12: 05 gQd; D% oL g 0105 1Y
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and (A7, &) is the transform of 8.(8) by Jis (23). Henee
(N1, Ny) is congruent to (N}, Ny) under the (juadratic Eranis-
formation Jis.Ji3(23) = Ajes. Similarly the paired sextics
(N2, Ay and (Ny, N)) have the following schemes which take
account of the pairing of the nodes:

{(Ney M)

" ' p . \
¥, P2, Pas 4, st fh .'\:\

g2%3..-0; 8% g1 0% @@, gL', g2yDh

(_;_KYE; ¥ ATI): " \ '
2, Y T N
QB4 . 0; 0% g(ls 0% 328, (3408 - g30: 11

- - . . o . \.: 3 .
Hence {Ni, N|) is the transform of ,%ﬁ’) by Ji1 (12} and
(Ny, N)) is the transform of 8 (1) bysdy (123). Thus (35, 3
is the transform of (N, AY) by ’(.] PITT L T (128), We set

®) R R 21888),
and verify by actual nlyltﬁ}li?:ﬂtiml that
o) 1 7
& — R
) B [0 =6 =3
e Oudl e - 3 — 2
O i3 —2 0,1

Furthekkiﬁfé Iy,0 is the product of a Bertini involation with
}"-pgih'és at Py, -+, P and a Geiser involution with Fipoints

AP, -, Py
NN . . o o .
\“Since a sextic is self-congruent under a Bertin involution

there follows:

() If a sextic S(¥) ds congrienl lo & seawtic S8 wder quad-
ratic transgformation Aoy, the sextic S(r) paired witl Sif)
is congruent fo the sextic §'(x) paired with S wnder the
Geiser transformation with F-points @b Py Pay P

Tt is rather interesting to observe the role played in these
relations by the eonjugate set of generating involutions of
g0, (ef. 6(4), .-+, (9)). These comprise of course the traus-
positions and the guadratic types Az, Dut alse the quintie

N
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type dy,...¢ = diw dige diee whick appears in (14) below,

the type in (6) Fho = Aie A1 o sy, and the type in (3)

R]. = -"lmu R],sm Ayao.

:M:cu:mrn:iinor to 54 (h) the rational octavie curve mj, cut out
on X by the quadric Jf; on noedes D, ..., £y, has nodal
parameters g(12; £, ... g(10; §)'.  Projected from Dy ib
yields a rational sextic with eight pairs of nodal parameters,
g (13; 0% .-, ¢(10; H', which therefore is the w\tu (\ L)
above, the tr ansform of So{ by JP e The line pi p of k\l N
cuts (¥, &) in o pair of points whose ]1(11(1111(&1& dre those
of () on the P-eurve, P(1*56 ... O)% Hm{&

(8) The cwrve m§ with parameter i(r) s cot DN phnw o il
nodes Dy Dy 1)4 i firther pruy of pomjx G(1E06 ... 80,
[¢(1256 ... 90; 7} 3], \‘.

Let wM{t) be the web of sexticswith a o-told point at the
node p; of j‘s (£} and simple pomt% at the remaining nodes.
This web w' () m&qr@wt&hraplwmmmgimil.mdl1(‘. surface M,
whose generators ¢(s) aviseefrom the lines (with parameter )
on p;, and whose generatoré’g(cr} arise from the pencil (with
parameter ¢) of qui_gitir:ts with 4-fold point at p, and on the
remaining nodes of\Sy (). Let s, ..., s be the parameters s

of the P—CLlrve;v,,:~.P(12)‘, .., PIOY; and o, ..., o the
parameters ox0f/the products of FP-curves,
7%

%3\}‘ P34 ... 0%, ..., PLO)'. P(1%23 ... O)%
Lhe ~§xce}>tiqnz1] points and curves of the mapping are as
\}‘@1]0\\-'5. All points on the line p, p; map into the point
1(s™, 69) on M, except p; itself which, as a locus of divections,
maps inte the generator g{s?¥) ( = 2, ..., 9, 0). The diree-
tions at p, map into a quintic curve on M, of type (mo}{ wsyt==0.
The sextic S:(f) maps into a rational oetavie on M, with
nodes at £ and nodal parameters g(1; £)'. The plane on
D,, Dy, D, is the map of P2, P 3)}. P(14). P(1*5 -+ OF
whence this plane meets the octavic outside the mnodes in
g(1®56 ... 0; )%, Hence (cf, (%) and 54 (1)) the octavie 18

ey and
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oh

(9) The sextic 85(t) is mapped by the web w(2) (1°2 ... 0)°
upon the vational octavic mi with nedes al the nodes
Dy, oo, Dy of the symmetroid I associated with S,(f).
The paired sextic §; (z) is mapped by the web #®{z) upon
the same rational octavic mf. Indeed the transformation R,
in (3) which transforms 8 () into S;(#) transforms the wek ¢
w(z) into the web wW(#} but interchanges the pencils s, g.
These two pencils eoincide, and M; has a node, if an(.i\éi’ﬂy\
if the diseriminant condition, Peg = d(172 ... 0)* = Q (efl 52
(7b)), is satisfied. If this symmetric diseriminant{¢ondition
vanishes the transformation B, becomes a collineation (cf. 9(3))
and the paired sextics are projective. If df\has a node the
Stahl quadric X is a conic and either sextis'S;(#), 5 (r) has
a perspeetive conic (*® (%), (m), (). "ld\énce
(10) If two paired sextics, S {(r), S (i \dre projective then fhe
discriminant condition which, erpresses: that an adjoint
quartic of ee'themfmﬂlﬁ-am}ﬁﬁa@ymtg, &l one node of fthe
sextic is satisfied, und eilhtr has o perspective conic.  Then
each quadric M; has a2 node and the Stall quadric K has
a double plane. N
It indeed S, (#) had & perspective conic and nodal parameters
#, &, at p, then™angents #, &, of the perspective conic are
on p,. Heneéthe pairs of uodal parameters of 8y (8, plotted
with referened to the perspective conic as K (1) (cf. 54 (4)),
yield e':}i‘()des of 8.(¢) in coincidence with those of & {‘t).
Conditions imposed on one part of a geometric configuration
mlqét"‘be followed throughout the configuration mth consider-
”‘:B;hl'e caution. For example it is a single eondition {?n S (D)
fhat it have a perspective comic. Its perspective cubics then
all degenerate into this conie. If in the constructionl of 54 )
the perspective cubic in the plane 7 of Cy {z), which s cut
out by the planes of (i (f), reduces to a conie the‘n 2.1 Jlane
of C, (f) coincides with the plane ¢, of €y (¥). This is 0111_)’
a single condition on the two cubic eurves in space but. it
requires that the commen plane be a facter of J. The s1.tuat1?n
is rather that S, (f) with a perspective eonic det.ermmes_ its
apolar space sextic curve R, (1) whose catalectic point sections
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determine X as before and theveby JJ. The peculiarity of J
however iy that the wel @ hag, in its apolar system g, -1,
a single net of quadrie envelopes with a common cubie curve,
i. oo the curves, ¢4 (), and (% {9, have fallen fogether.

Of the 2¥.31.51 rational plapar sextics eowgruent to
Se (1) the symmetroid X yields two paired sexties, S (r), S (Og\
and the 2% 51 symmetroids congruent 1o X vield 2°.51 sacll
pairs.  Thiy pairing s assoeiated, as we have Ht'(f.rp,\'\\-"l.?ll
a discriminant condition, Py, Those elements of thergroup
52 (5) which leave this condition unaltered apd\ therefore
trausforul 4 pair of ratiosal sextics into a ufiﬁ"{:{'}nstitute
a subgroup with an invariant g., conxistinavE | oand 1,
whose factor gronp i3 the group 53 (:1‘3:}wa congrient. syi-
metroids, Those further diseriminant_efuditions on the nodal
set Pf of S () which are syzygetic;lb’ ;‘-’,_:r_,, viell digeriminant
couditions on the nodal set 14, pff',.,‘:'.“ Tt is indeed elear from
the mapping in () tHff-dbraulibfary.org.in B
(LL) I moddes Th, L) of X (‘(JEI?E{Z’EII;’?{.'.' e wodes pi, 1y (;j\a (O[S (ri]

coincide; 1f 4 nodes of X ave copluniar then the complonient-
ary 6 nodes of 59"(% [S, (23} re on a conde

Diseriminant conditions azygetic to P,y may be described
in terms of thc.'slpeuial behavior of the quadiics M with
rexpeet to X, ﬂmi‘, Goubtless, translated to a particular behavior
ot e Sr.gkdlhiiadric K with vespect to X as in (10). Thus
front the@m‘pping it is at once apparent that:

(12) ﬁﬂ':ffn‘ee nodes py . Pa, Py of S () arve collinear thew My
Py :}c})’i'afrc-ér'a.sr the time Dy Dy, or wlso M, contains the colbic cnree
\\‘ on Dy, -0 Iy, T4

The linear system () of conies in the plane maps the
plame upon a Veronese Ty (t) in S, the locus of double points
of o cubie spread 37, the map of pairs of points of the plane.
The sextic S (¢) 13 mapped apon a 10-nodal rational curve
() in S,. If 6 of the nodes of R'¥(#) are in an &y, then
& of the nodes of bT (f} are on a conic and the complem_ent-
ary four nodes of 2 are in a plane. Hence the set Py of
nodes of R'2(4) is the set associated to the nodal set plot 5.
But then conics in the plane of Sy {(z) must likewise map
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its plane upon a Veronese Vy (r) containing the same P,
Henee
(13) 1f two Veronese sunfates, Vs (1), Vs (z) meet in 10 points,
Pro, then this sel ds associnted to the set, Piy, of nodes of
a syminetroid X, The spreads M3 (1), My (@), with double
Vs (1), Vs (¢) respectively, each cut the dowble Vi of the ,
wther in o rofonal 12-ie curve, B2 (0), B (1), with nodes
at Ply. These 19-ic curves are the maps of the fwwo “ratiphdh
stxtics assoceted wifh X, O
A vegular quintic transformation in 5, with sig‘ﬁf-points
in P, converts Py into a congrment set Ql aiddéiated to
a set (O congruent to Pi under regular cubie Transformation
with Fepeints at the complementary four points of Pi(16(8).
Under such trapsformation a V5 on Fpris converted into
a ¥4 ou Qf, their respective 1‘)1&11(;3':1}%1@ congruent under
a’ ternary quintic transformation ...4:.‘1’:...(5 (31(17)). Hence
(14 If X s f-o-:-e:qr*?r.qu,ja;@‘t‘t'é]-@%f%;}.af%fyﬂ—gfga'cﬂ‘ansjb:gnatéon ey
in space, then S () [ {(ed] @ congruend to Ss (9 [8] (1))
tneder the guintic ta'fril.f;foriim.ficm Angravo

The entire ternary Cremona group is generated by collin-

eations and a sin 1€~due1dra.tic transformation, A;ss. It con-
tains snbgroupshof ‘the same nature and degree of generality
as itgelf; e.‘g'.':tﬁe group & generated by collineations aud
the quiuti@{tr‘&ﬂfsf()rﬂlat-ion Ajoasng. This group & is isomor:
phic withh“the regular gromp in & which transforms a Ve
into_ itself. With congruence defined as congruence under &
u\.f}f’anar rational sextie is congruent to 2°.51 pl‘Ojf:fCt-i‘f’EI.V

~@igtinet pairs whick are in (1,1) correspondence with .t.he
9% . 51 projectively distinct types of congruent symmetroids.
An investigation of the types of gronps G thas defined h}-‘i
particular types of Cremona transformations would be of
decided interest.

The jacobian J of a web admits a variefy of Cremona
Thus the two cubie involutions de-
gly in 54(23) each define the in-
ansformation for

transtormations {cf. *).

fined by &, I respectiv

volution 7 on J and their prodoet 18 a T

whieh J iz a locus of fixed points. Also since X js a trans-
17
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form of J/ by a cubic transformation then the J, .77, birationally

equivalent to congruent X, 2, must also be eguivalent under

Cremona transformation. 1t is nevertheless desirable to restrict

somewhat the type of transtormation =0 that a gronpoid

property analogous to that of congruence muay appear.

A suitable type is that cuble transformation with sextics

F-curve which degenerates into a cubic ewrve N and thred

bisecants J. This has been studied in various u)mmv'rm:\

by Fano, Tinto, Young and Morgan, and \anlt(“-alm\((‘f A2

pp. 2034 and p. 217, Montesane® shows that 101 Mixed N

and variable triad of bisccants these trenstorm: 1\10115 produce

types isomorphic with the ternary types ofefemona trans-
formation. We give without piroof the wligbrem analogous

to (14). “o\’;.\

(e) The jacobian J is transformed bindlee cubic transformalion
with Frewrves, Ny, da, Ay, Ay into e jacobion J'.  The
symmetroids X, Ww{{ggyl;ggmﬁ,ﬁry-@pgmmi to J, J' are
congruent under the ?‘egm'm ‘caebic transfor mat;ma A[m
A consequence of this evefitual symmetry in 1. 3, 4 is

that if J is transf(}rmed\mto J' as indicated, and mto JH

with #-loci, Ay, Ag s{lg, Ay then J* and J'' are projective.

Thus the product, Oi\“ ‘0 such transformations and a properly

chosen pm]ectluty sends J into itself.

56. Relat&g projective figures and projective groups.
Let 8, (= Md Sg(t) be two paired sextics and let K{f) be
the coydrl nt conic of 54 (4) in the plane of S (z). The
anQ\ ot points eut out on 8,(f) by the P-curves of the nodal

i; of 5, () will be named by the guadratics determined by
théir parameters as before but with the parameter { deleted
as in ¢(1)°, ¢(12)%, etc.; those similarly eut out on & (z}
will have the pavameter z indicated. With reference to K{®)
as a norm conie, these quadratics in ¢ determine puints in
the plane of S, () which will be referred to as the “points”
g(1)", ¢{(12)%, ete. Aeccording to 52 (10) et scq. if these
points are marked upon the plane of S (z) there will be an
initial set of 527 points (cf. 52 (3)) each of which will be
the initial point of an infinite conjugate set under a ternary
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collineation group I'oe with the invariant conic X{f). The
527 sets cxhaust the points q. Two poinfs ¢ are in the
same conjugate set if and only if their signatures are con-
gruent mod. 2. The group Iy is generated by a conjugate
set of involutions, i.e. harmonie perspectivities, determined
as follows. I (1™, ..., 09 and ¢(1%, ..., 0%) are any ,
two points g for which .
() FE 1y 8 = «rr Vg8 ¥y 8 = 0, \\\
then the harmonic perspectivity whoese axis is the lingdﬁoining
the two points ¢ and whose center is the polé/ef [ as to
KAt} is a generator of Typo  Some of the mm} interesting
projective properties of eertains groups {f,these points are
developed here. ' 4D

We observe in the first place tjxagt;\t-he points g contain
an infinite number of nodal scts Pﬁ} of planay rational sexties,
According to 54 (4) the fgn &l‘i’ﬁiﬁ‘ {-Igl‘)‘gnfir.l..., g(9)°, ¢(0)° larle
the nodes of ) (z) itself; thesen pomtsy (23)% a(81)%, ¢ (12)%,
g{4), ..., g(0)* whose p:]’l‘éﬁlefel“s arise from 8:(f) by the
quadratic transformatiOn dis; are the nndes. of the‘trans*
form of 8 {r) by.t@.‘(}eiser invelation I7 with Fipoints a;t,
g(4)", ..., ¢(0)° %55 (7)); and the ten points g(L23 .- O,
q(2)% ¢(13)', -.\:’-i;ig,v(i())’ are also a nodal set (:55 (4) et s.eq.).
In the enti{e: configuration ¢ there are 91%.31.51 1]1'.03‘ect1\-'e]y
distinet modal sets P of this sort and the remaining sets
arise £20m these by the collineations of I,z _
(20 The entire configuration of points q can be obtaned f-mm
~ Ju given nodal set, e.g. q(1)% -, M b'-y the anem-
" process of constructing the 9t intersection of tiwo cubics on

elght points. ) .

If indeed €} is the cubic curve on the nine pomts ‘
than g(4)° (i—=1,..-, 9, 0) then C; contains the vieruces of
4-lines civeumseribed to K(f). For, on §(f) the I cut out
by lines on the mode p; will, when t'ra““’:fe”e‘i to K(h.
produce a system {oc') of 4-lines Icircumscﬂbed fbeout }.{(0
whose vertices are on a cubie and whose opposite vertlc.es
are in a hessian correspondence «’ == u-t+o/2 on the cubic.

17#

ts other
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Such opposite vertices are ()" and ¢(14)' (f=2,...,9,0).
Henee the cubic is ¢ and it contains the point ¢(12)' which
is the intersection of €; and €%. Thus the nodal set ¢(23)!,
g(31Y, ¢(12), ¢(4)% .-, g(0)® can be consiructed as in (2).
This belongs to the sextic paired with the transform of S, (£
by A and the entire configuration can be obtained by
successive quadl atic transformations.

Another notable set of ten points g, which is not a n({d?ﬂ

get consists of the foul points ¢g(1)% -- -, g(4)* and Bhesix
points ()" (4, j = -, 4), say the set . 1t is cgayénient
1o symmetrize the Imtatlon by setting g(2)%= vy duﬂxqf.e;)‘: i1
(#,7, k,i=1,---,4). Let the six further pointsg8)". - .., ¢(0)°
be denoted h3 Qﬁ Then first there are five gational ‘SC\thS Sy
(z = ., 4) with six nodes at Qf 111({\1“0111 nodes at 7.
One o.t the%e is the original sextiec 151(?) = &, with nodes
at ¢(1)% ..., ¢(4)%. The first of ghe Temaining four is the
sextie 8 mth nodes WVQ@P}"&L@@S@& ok’ ¢(23). The
five sextics S§; are thus the? pexnca paired with the five
which have six given pair§ of nodal parameters. Secondly
there are five cubie cur\{gs,Y(z- on € and on those six points ryf
which are complemen&‘rjr’ to the four nodes of 5;. TFour of
these, Ki,--., K,{are the cubies €, ..., ¢!, above which
have the requirgdproperty, The fifth, &, is to contain the
six points q(g@\(e,} rm 1,0, 4)and g (b 25, ..., 9,0).
It may beproved that K, with the required property exists.
It then t‘h? mee is mapped upon a cubic surface by enbic
cuwe%\ bn Qﬁ (which isolates a sixer on the surface) the
\)Qu,s K; beecome an inseribed five-plane and the sextics S;
become the rational sexties cut out by the five quadrics
which touch the surface at the vertices of one of the five
tetrahedra of the five-plane, Conversely if a cubic surface
has an inscribed five-plane these five tangent gquadries exist
and, after choice of a sixer on the surface, the five cubics K
and sextics S; are determined.

Ag a consequence
(a) A necessary and sufficient condition that 10 points py, ---, ps;

Py om0 Poy Po De nodes of ¢ rational sextic 48 that the four

Q!
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cubies on the last sixz points Pi and respectively on three
of the four vemaining points shall meet again by pairs in
siw points which also Tie with Py on a eubic eurve,

If, in conformity with the notation for the set R, the nodes
Pre oo 0f S3(f) have nodal parameters g, «--, ros and
the line joining the nodes ps, p; meets & (%) again in rg
(¢, -y 1==1,.-.,4); if also the points p; be taken as the
reference and unit points respectively then the paramg’tlri(;\

equations of 5, (f) are .\
B, N
dy 5= Fgn Tog P1g Ty — &y = Voa Fou Tug K7,
N
(3) oz = Tus Tor Fas; X3 &y = ¥oa Voz Pyt ."’tﬁu‘ = — 7}
Ty = Vo1 Top Mus B X2 = Fod ’?'08\'?'Ls
9.\

Then the 10 quadratics » are connecfed by five quadratic
jdentities which are due to these gbyious identities in a:

XY (iry — g} e dRr aullﬁga}ﬂww ) =05
Iy X "L'(‘Eﬂ —ay) = 0.

The five quadratic relations are
e ‘
(‘U Vit ¥l ‘I’ Vi 3‘;5&\;\_\33,; ¥rr — 0 (3: T i = 0: Tt 4)

Due to thesé’relations one may prove that

(b) The setraf 10 points B can be separated in 10 ways, by
isalating o point vy, into fhree Poinis Yum, Tmi, TR and
thredpairs of points on Hnes vix Tjky Tt ¥jiy Vim Vjms sueh ﬂfiaf
\ﬁw triangles of three points and three lines are jae?'spfact:%ve.
“\Phe property of the set & expressed in (b} is very similar
\0 the perspective property of the Desargues configuration.
The configuration E however has 9 absolute constants where-
as the Desargues eonfiguration bas but three. It may be
verified easily that eight of the points K may be‘chﬂsen.at
yandom, the ninth is then any point of a unique Jine, which
when chosen determines the tenth uniquely. Th‘is of ceyrse
is on the assumption that the uorm-conic K (£) 1s not glve.n
in advance. Indeed ome may prove that the five quadratic

relations (4) ean be veplaced by the five linear relations,
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(B ra-bFratretratra =0 (g = — s = 0),

of which only four are independent, and by any one of the
five quadratic relations. The linear relations determine the
projective situation of the points R in the plane as expressed
in theorem (b} and the guadratie relation then determines the ¢
location of A ({).

This suggests another way of hlmtrmg in the quadratnqh,
or points of R. If wo, .-,y With g+ -« + 9, = — B/ are
the supernumerary comdmates of 2 pomt ¥ in Sl t}‘re line
codirdinates, pw = (i yk — yeyt), of the line g/ @S, satisfy
the lincar relations (5) as well as the quadratiévrelations (3).
The coordinate system determines a five-plane; and a quadric,
adjoined as follows, brings the nurnber o{‘abso]ute congtants
up to 9. [et

©) = ) 0, Tl is%iiﬁgqn =0, 4)

As £, 7 vary the point y(f, z‘) rans over a quadric with
generators (¢, 7). The lQ‘le catirdinates of a line on points
y{t, ) and (¥, ¢ ar\é‘

(D) Py = (:-‘?-,‘,-'t?,(?-i«,- ) (r7') -+ (3 0) (sy2") - (20).

¥/
For ¢ =1, 1.8, a f-generator, the ten line codrdinates are
a set of guadvatics (v5 )% and for+’ = 7, i. e, a r-generator,
the ten liné eodrdinates are an entirely similar set of quadratics
(sij T8 Where
£\
@‘:@‘U 0 = (i) (e t) (o5 8); (sy7)® = (i) (ma7) (7).

Further details with respect to these configurations will
appear in the article cited in connection with 54 (a).

Attention may be called at this point to a method sug-
gested by the author (** pp. 359-61) for setting up series in
the plane of S; (£} which are formally invariant under the
z{{‘f})‘g of Sy{#), and which are readily transformed into series
invariant under Iy 2.



CHAPTER V1

THETA RETATIONS OF GENUS FOUR

The variety of geometric configurations and of algebraic. O\
forms discnssed in the preeeding chapter had the COIMON
property of being, in one way or another, projectively defey™
mined by the birationally general algebraic relation of gefus
four, "= (e} (@)’ = 0. In the present chapteisome of
these geometric figures will be dedneed dircetly® from the
theta relations. The developments are due largely to Schottky
who observed that the P, of ten nodes oL symmetroid =
eould be expressed in terms of nmrlul;it‘funr:tions of genus
four of the abelian type defined byv/an algebraic curve.
The bearing of this upon the prehleh of the determination
0f the tritangent ]JMH&Sd%fa}ﬂi§l‘ﬂt§ﬁﬁngbﬁl space sextic of
genns four will be discussgcf,’ftt the close in the light of
the similar problem pregented by the double tangents of the
planar quartie. o)

57. Derivatioriof certain theta relations. Forp =
and 2p+2 subselipts, 4, j, o> = 1,2, ---, 9, 0, the odd and
even theta fmi‘&ibns of the first order comprise the 136
even frnetiGhe! ;, Him, With zere values c, cypa: and the
120 odg\:ﬁ}ﬁhtions, ke The half periods are represented
by the’pbints Fy, Pym ip the finite geometry mod. 2 of an
8; agferred to a null system Ch. '
Qﬂ’he projection and section of the nu.]l syster 04_‘ by
a  point and its nmll space, say the point P, le?d‘* to
a derived null system, €. in an S; (cf. 26).  The pomts o
the & arise from the nwll lines of €, and ave named by
sabseripts ¢, 7, -.- =1, .-, 8  Thns the nuil hnfzs P-HO_',

' - P . i the points &y
P,f;_, _I’;{j;]{]; Py, .P-Q'_;,r;g, -[J';n-nap ont Py 10 85 contribute } Cin &
and  Pyg == Lanop respectively in &. The quadrics m_“’
e s . o peanect to these pairs,

on P, divide inte 64 pairs and, with respec

we deflue the products,
263
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(1) X = Jato, Xyig = Xonaop == Fyias Fyman; Xy — G4 digo,
with their zeros values

(?) F = oo, Pkt = Cijnty Cijkto -

It is proved below that these products satisfy the samey
system of lincar relations, as the theta squares for p - .3.

The projeetion and section of the null system C} in 5, \f{"oﬁ
one of its points is eguivalent to the projection and, Section
of the original €, in &; from one of its nall 1ing§"'and by
the null space &, of the pull linme. If the nul],,(lg'ﬁé in the &;
is defined by Ps, Pis, the result is a nullsggstem €5 in S,
whose points are named by subseripts ¢, 7, AN 1, ..., 6. The
quadrics in & on the null line dividefinfo 16 tetrads with
respect to which the 16 producis and” 10 zero values are:

5 Vi = Xi Xis, %ﬁ-dﬁrég?}?}fiﬁfyﬁ.%‘;g-lwn T kT Pijis
(3) G, k2T, ... 6).
Similarly the pro_jectimikmd section of this €% in &, from one
of its points and b\\o\ne of its planes is a null system ) in &
which is also the.prdjection and section of the original Cyin &7
from one of % null planes and by the null 8, of the null
plane, If,.th'ﬂ\ﬁull plane in &; is that defined by Pug, T, L.
the null ystem ) in S, has a basis notation with subsecripts
oy éfi y«--, 4. The quadries in & on the null plane divide
in’l:\tll‘é’ octads which yield 4 products and zero values, namely:
\ 3
(4) Z = Y;Ys, Zy = Yis Yys, 1Ty = qip Gijs

("5!.} = l} Ty 4’)

Following Schottky (* pp. 251-3, ef. also ** § 4) a notable
set of linear relations connecting the theta squares (p == 3)
is obtained, The eight functions, s, as, - -, ey, & are
a normal fundamental set (cf. 26). Since only cight theta
squares are linearly independent, 43, must be line arly expressible
in terms of the eight in the F. 8. Since all except # vanish
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for == 0, $% ean not appear in the relation, On adding
the half poermd P; all the funetions except g remain odd
whence Jiy can not appear in the relation and similarly Fis

©.o 7
can not appear. Thus the relation has the form, > e i
o

3 . :
= A9%. On setting 4 = Pus, dos ¢ = + A, or

(5) Gy = Detpadis  (@=3 T
. i N

On replacing » by u+ Ps this becomes A

(6) &9 Dk dan Yo = 0, m'\."'

These two relations contain a closed set)oi six azygetic
funetions, i. e., any three are azygetic (@ the six are linearly
dependent (as quadrics in S Thg.ééﬁeral relation of this
character may be described as follows:
() If Sy, e =y Pelesgume Abratlibearsonedin hosen sels of sih-
seripls) are a closed azyg’é{ic set of stz functions ten
=
twhere P is tﬂé@zﬁlf period (proper ov zero) for which il
the functions B, D are even.

Phe functions X of genus four defined in (1) of the second
order and’Gharacteristic Fpo behave like the theta squares
(p =3in the following respects: their linear independenee
(c£a20(9); their vanishing when » = 0; and their permutation

_iidér addition of half periods (syzygetie with Pp). But this

< pehavior was sufficient to establish (5, (6), (7). Hence
(8) If Xy, -+, Xrla, &, 2 properly chosen set af subscripls
Jor p=13) are a dosed asygetic set of six Sunctions then

ngrzl X(\', = 0

with subscripts L chosen as in (7).
One of the relations (8) is
t=4
> o pises Xgos & poors Noo 2 Xnw = 0.

i==1
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This for » == 0 becomes

() it g - 0 (= 1. 4.
which is one of 15 Huear relations among the 10 constants gy
of the same form as the system 30 (V) for p = 2.

Let wy be the lincar term in the development of the odd{
theta function & (#).  Corresponding to (1) and {(4) we A
{

7'\
(10) Bip = tgn M. HYY 08 T e « \J/
N
The theta velations are satisfied if we set as in? 45 (5)
N\
{11 x‘)‘f_‘;;; == [ Bd ?-.'-,rj;_; - r-f'{;;‘-. y

Y
W/

The variables » are then not llnrestl‘i(:,tﬁﬂ’*bllt- are rather pro-
portional to algebraic funetions of @wriable »; and the o
to functions of . They are subjeet to two homoegencous
relations of higher meébwh!@}am ofg.idetine the normal
curve G for which the mghdare tritangent planes.  Then

from (8) and (5) there folbwws

~ ~\
12) i ps rU\—i'r_*}f rig = 0 (7= 1. 8
B S gl v Vi Vo Vi = 0,

On 44 the V«p‘ue in the (9 of contacts of contact quadries
of the Wh\&n P 80 that an\ four are linecarly related. Let
then SNV e = 0 (7 ==1,...,4). The lemma of 45 (4)
(Lp]ﬂ@@ to thls linear xelatmn and to the quadric relation (12)
\é{ds > o A3 s, The econstants A,. .--. 4, satisiv also
the equdtums obtained from this by replacing the indices 78
by 57 and by DB, These three equations are sufficient to
determine the iJ to be 1: = Jyera pjser Piaos-  For, the equa-
tions are satisfied due to (9) when these values are substituted
in them. It is understood of course that (9} includes all
the relations similar to it which can be obtained by projection
from any null line, The linear relations may therefore be
written as

(18) 2= (s e nen 402 = 0 (G == 1, ool ).
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_J;f2 similarly Bs V'oss -6 BeV owg = 0 (k = 1, 2, 3) then
By = prers Prasy Prase 2and (applying the lemma again)

(14) Don =+ (pussr Dhtss Prestr P = D+ (gros s}t = 0
k= 1,2,3).

The three terms which appear here are the quantities

in (4) for the projection and section from Pyg, Pre, Pys whettes”

(cf. 28 (11)) \
(15) The three products of zero values of eight even, ﬁ.;ﬁ:‘c!éa?ts
defined in (4) salisfy the relation R4

Vi Vgt Ving = 00

For each of the 255 .45 null plan.e‘s{'(}f. 28) used for pro-
jection and section there is a relation’ (15). Schottky *° has

proved that they each.xarsstufbeNraly gondition that the
ten modnli ay of the theta funchions are of the abelian type
which occur in connection With the normal integrals of the
first kind of the eurve o} genus four (ef. also Roth *" §9).
For values of p beyod-four the p(p+1)/2 —(3p —3) con-
ditions of this type Have not been obtained.

Schottky (% fip-264-6) goes on to point out that the 28
root function\} vy, obtained by projection and section from
the selected” half pericd [Py, satisfy the same system of
linear & fions as the 28 functions uy (p = 3) (cf. (18} and
45 (B)), provided that the constants V pm (p = 4) replace
thewconstants ¢y (p = 3). Moreover on comparing (14) with
§53 (A), and (9) with the modular felation p = 3 of the type
obtained by setting w = Fs in {6), it is clear that Dboth
systems of constants are conditioned in the same way. Hence
the 28 V 'y, lying in a linear system (w0f), are the double
tangents of a planar quartic, #*. They also are in the linear
system g° of coutact quadrics Pp and are gections of a Wir-
tinger sextic W related to f* as described in 50 {in par-
tienlar (18)). As double tangents of f* the Vv satisfy
a system of irrational relations (45 (C)) all of which are

Q"
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cquivalent to one rvelation, the rational equation of £ itself.
These transfer to g - 4 as follows:

(16) D (i qis qon VY 0 (e 102,8),
At the valnes of the ey oo vi e -7t Hina et AU
obtaimed from the values of o, -0 w1y as finclions of @N
on W, In (16), which is an eyuation of /7, rhe vidnes of
fy.veeo ity st be those assumed when o s one ot .(}1\("."\24
points common to 1 oand Wolel the vy J0d the
e arve constants. Henee “ 3

VWA v o Parza (8 E ds pusseble tu __,{E.i&ir'rm.«-lfme’.a' i

for e froedions e sieely e e st r)';f' et féones (16}
Sor ey isolided syzygetic half pr:w{!\» Pon. Fhe s satlis-
S achen s Ciit \

It will be observed that the 24 ﬁomt\ eommon ta fand 17
are. on the canonieal carve (4 .» Jge spaee, the braneh points
of the two 7% in YRE d‘H’fﬁH‘l{Qﬂa’m S&dfion.  The vulues of
the sy at one of these pﬂlnh are independent of the par-
tieular hall period PelWwhich cestablishes the relation be-
tween /% and T T equation (16) iz the basiz for the
ennnection, establﬁh}d in 59, of the nodes of a symmerroid
with the moduldvtunctions,

58. Definition of the planar set, Py, in terms of
modular, "ﬁhctions When one of the 136 constants «,
say f{,&s\‘nushes tlie normal space sextie, G4, of genus four
1 oy quadiic cone A (ef. 51). The 120 tritangent planes
Jof “¢% are then rationally separated by the discrete points

\UT set % with which there is associated projectively
& plane curve G.?, a birational exemplar of ", The line
xections of G5, a g, are contained in the complete linear
series rj': cut out on the normal &) by contaet cubics of the
system determined by %o (). The & is mapped by this 75
upon a curve 73 of order 9 in 8 and () is the projeetion
of I} upon the plane of P§ from a properly chosen non-
secant plane. Schottky® has obtained a projective definition
of the set £ directly from the modnlar functions for which
ep == 0. The pertinent part of this memoir follows.
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The 28 root functions defined hy

(1) Fccﬁ == Vuago V'h‘.jggo ‘V'!hx.sg (a, ,8 = ]_' sy 8; o 4: ﬁ)

determine on &% the nine contacts of three tritangent planes
in the system of J;. The contacts are therefore a set of g2
but, due to ¢, = (0, the 28 fupctions satisfy a system of
three term relations by virtue of which only three are liges,
arly independent. These three are line sections of*\thé&
planar G5, The three term relations are derived,frjgﬁi the
system 57 (13). If in 57 (13), when written in j;eﬁns of the
¢s and wug's, the indices 6,9 are interchapged, and the
relation is then transformed by the period transformation fess
under which the ¢'s and wy's are pqx;qu\ttéd like the even
and odd functions, it becomes (cf. 25443)

' N, 12
Ek = (Crasao Crases Cr5e19 CEBI90 ChaTsh Cheaes Hhos 100}

@) = (o €6 C2180 Cu\ﬁggﬁb%ﬂr@%@ﬁ?f@@ﬁ‘i@h 0k=123).

~ ) §

IJf to indicate projectiells ’_f.rnm points other than Py, P
the products p, g are"’}:ﬂtten more explicitly as
™

(3) : p;:f??m == Ciimn cjk{mn
then (2) tagés\ the form
L]

\Y ’ a7 ABONLE
(000 60, 6 (6012 :Zx;i (gEO6™ i IO —
Ly B Preass Prars PrsroVro _
( )".\ g — 0 U{“’-: ],2,3)

*

: '\: ' _ - -
<7I‘Fiis, multiplied by I te00 and modified by (1), yields

6 SR By = 0 6= 0

ans of these relations any of the 28 Fug can be ex-
s of a properly chosen sef of three

If then these three are equated to
three independent linear combinations of o, 1y T2y the1 ¢0-
srdinates of the point z in S, are expressed in t.erms of the
V uge. Since the 7 functions Feg with common index e can

By me
pressed linearly in term
such as Fyy, Fis, Frs.
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all be cxpressed in terms of two, the corresponding lines in S,
all pass through a point pe (e = L, ..., B} and Fiy is the
line joining the points pe, pz. For varviation of the initial
tering » with the variation of a point on the normal (r;, the
point x runs over the curve (3 with triple points at £5 since
the seven functions Fug for fixed o vanish for the three zeros £
of 1 tas, 4 tritangent plane of G
Setting tor brevity

e H
(6) e ¥ Ugno, pPo= Il (Vs ). m:"}'«:

(== x

.’\"\

(4
Schottky defines a number of frther root funct.itﬁi? as follows:
Gagy = PV qr] Vi Vg W%

Hag = D Vi Voo 165,

Ter = PV Ve KVt

Ko demﬁn sy oz in

Lﬂrﬁs - i Kfér:i g
La;jy == (rp}\w Jrni';'
Ltel.:?tl " H{: H R

Lccﬂn AT Be:

These with Fage Care the sections of e by the FP-curves
(cf. 51 (1)) afythe set PS5 to which the improper section by
Ple)?, i\ "/<a, should e added. The L-curves are the
pairs Gf “eurves which in 51 (1) make up the degenerate
bC"(th' of the web with nodes at %

The algebraic relations among these curves are cousequences
of the theta relations 57 (13). The lincar relations among
the Fuz have alrcady been noted as conseguences of {4).
Other three and four term relations connect

(8} (yzo 1ol (ttaag w0)™, (Uspo tors)2;
(b)) (rtrzo tespo)™™,  (rers trasy)¥2, (ing tugs)™3;
(B) (€} (1tran ttase)",  Cotiso 2a30)™  (itage tise)?;
(d) (ergo tino 2, (atas sl (ttyeg 24002,

(e} (100 ts00)"”,  (ttrge tgae)%,  (trog trsou)™?, (ur9r Uss)'™
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the last of these being obtained directly from 57 (13) by
permutation of the indices. The relation involving the terms
in (d) arises from (4) by the permumtation (629134). The
terms {a) arise from (4) by the transformation 1 . (63584);
the terms (1) from (a} by g (3582); and the terms (c)
from (L) by Zuse (1384) (52). These transformations do not
distwrb the equation ¢, = €. N
It the terms (g), ---. (¢} in (8) are multiplied respectively’)
by (s, 8838 1*%, F (3,012 /(82 85)52, Posysess 2/ (s)¥?, Py (e
D2 (s )1%/(s,)t%, they yield, by comparison with (7), thie‘terms:

P

{a) Fiz Fyyy Fos By Gogs; ~"‘;\\
)] Hyz Fli Gassy Fis Geged
(9} (e) . Jiosy His Foas Hﬂ,-if:l}\f
{d) Ko Gh H, 1, Gléiﬁij.ﬁ
{c) Lygo, K3 Fay, K3.{J By, Ko Fan.

Each growp of tertig ifgdibiiinearlyinclated with coef-
ficients which can be deter}nhéd by the same transfornations
as were used above todproduce the group of terms. Hence
in (a) e =0 18 ,a"'éoniu on pi, -+, ps and theretore, by
virtue of the symetry in its definition in (7), on ps also.
In (b) Hi» — 048 the cubic with node at i, ﬁl’lll. 5imp?e
points at PENT, g7 and, by symmetry, at ps. hSirqm]arly. in
(e) and.(g'),\f,% and K. arc the P—gurvcs, P(]2l223~4 B
P(1238V. . 83 respectively. Tu (e} the sextic curve Luw
musi:fhave a triple peint at p. and nodes ab Pa. Puy Par Pos Voo
..\ﬂfi\’a'glt least a simple point ps. Again, from the symmetry
AN bE Ligo = P23, it must have a pode at p, and be the
P-curve, P(1#2% --. 828, . _

The effect of the definitions (7) is to assign definite values
to the constant factors in the equations of tl}e P—ct?r}'es.
The jidentical relations which follow f[rom these definitions
are varions forms of the eguation of Gi. Such are

(a) He s Hyy H}M‘ = Hp e HY:F? Hey

(10) (b) Soapo Hp oo == l’:ﬁso H,p;
(c) Jagy Kug == Fop Gagy Lyso.
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The concluding sections of Schottky’s memoir deal with the
previously known mapping of 6% upon the normal Gf deseribed
in 51.

We examine further the projective definition of the set
P in terms of the modular functions. The relation (3) cou-
necting the lines Fy,, Fi,, Fi reads

Al . '\~
{11) Z;; 4 (pO gt AR E 0 (e 2, ,-{,.,\4“.
This is to be compared with the projective 1ol<1tmn b
m\
(12} 1340 Fy 4124 FL A 1230 BN

\.
where |¢jk is the determinant of the ctig{ii‘i‘nntes of pr, Py Pre
From a comparison of (11) and (1")

(13) 1124|/,134 m\(ﬁi%tﬂs“api‘;g A 1““,1;(?},;;*_0[},; PR

This value depends first u.pon t-he isolation of ¢y -— 0, upoh
the iselation of the indgx}g i the definition of Fly, and upon
the isolation of 1,2, nﬂ({\} in the formation of the vatio Dut
it should be independent of permutation of 5, 6, 7, 8. Thix
is in faect the .Qa}ée" because of the relations 57 (15). Tor,
if the value given in (13) be equated to that obfained by
the intercl@@é of 7,8 then
O\

el ) \ e ; 2
(}\1357?5 Panag Paess 132579)1' == -+ (132675 FPasee Pauns }Jsmn)t'n

Bug/these are two of the terms in 57 {15} tfor which the
third, (p Peres Pesrs Peses)t’? = 0, since p == ¢, ¢, = 0.

On replacing 4 in (13) by b and taking the ratic there
results:

() L4 090 e,
1260 T34] T A ol

This expression for a double ratio of the four lines from
p1 t0 pa, -+, ps O, more specifically, of the double ratio of
the line pair p; ps, p(ps with respect to the point pair, pi. Pss
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in terms of modular fanetions is the desired projective definition
of P5. As before its value is unaltered if the index 8 is
replaced by 7 or 6.

!Jnder quadratic transformation A, P is congruent to
P for which pi, pi, pi, pi, ps 18 projective to py, p2, ps, Ps, Pa-
Under period transtormation Iy, p5, = Co Crass 1 CONVerted
N0 €m0 Coase = Proge-  Thus the effect on the left of (14)
is to interchange 4, 5, and on the right to interchange 2, 33:\
in cither case the ratio is inverted. Hence O
(15) If, n the definition (14) of the set P5 in terms of gné’dular

Sfunctions, the moduli are subjecied to a petdd” trans-
Jormation, the set P? s transformed indp a"‘%t B con-
gruent to P; under Cremona transformgtion.
59. Definition of the nodal set, P{’o,,q}ﬁ\a symmetroid
in terms of modular functions.;:’lﬁue' theorem 57 (17)
states that the eguations 57{16) cah.be satisfied by certain
values ey, of the odd g}%@im%% &?ﬁ}al'gjy{g‘ gej%llations then read
(1) Zr‘s 4+ (qgggum qgggn?m gﬁgﬂ"s,) éi_gf})iffs]}lh = =12, 3).
An equation of this sgsyém is defermined when the null line,
Pyo, Pos. Prssos frars@which the projection is made, is chosen
i one of 255-21ways (cf. 28) and when thereafter in the
projected spapedp = 2) any three of the six odd functions
are selectedy'The number of such equations is therefore
255.21 \2\0"\
The&ﬁquat-ions take more simple forms when the constants ¢
are\’l:éf)]aced by constants ¢ from the equations of Schottky
{éﬁ‘(l)) in which

(2) L= Fium ™ m S = G

The conversion is accomplished by the method explained in
45(11) et seq. The space & allied with each of the terms
in (1) is the & determined by Py, Prsy Pusy Pog- The space
G syzygetic to G is the 5 determined by Poo, Prs, Pis Fls-
The first factor of the first term, Ciere, corresponds to the
quadrie 4579 Which is not oo the four points Pis, Pstes Pisoos

Py of . FHence eg, -~ ocour in each of the 16 factors
18
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in the first term of (1). On extracting the roots indieated
by (caeis)™ = {(fraee)'™ the relation {1) becomes

B I .
(53) X7 ok van Goure fause Prase == 0.

Recalling that the ¢'s are identified with the points in the
finite geometry in &, it is apparent that each of the products™
in (3a) is identified with four points which with the nnll hne
€rg, €ao, €rsve Make up a null plane.  The various types 0.( sréh
produects may be obtained by projection from the nult line,
and selection in the resulting S, (p = 2) of ong, Lf the 20
ordinary lines. 'They may also be obtained bymt{.}nshmnahon
of (3a) by the involutions Iy, A completé\sét includes, in
addition to {3a), the following (cf. S{'hott.b 353 up. 280-4):

4

(3b) _'___Gz'% s f-‘wmr) (’14%’—'— 0

. f' " 5 €356 iy
(5(‘:) 01y Cuy CLaop Cagan j Wy S14T S NI | 4‘\ I .

WW dbraﬁﬁmrﬁzm% infease €puys
+ A
(3d;' = "5‘ fay 511.)6'914;8 trge — 0;
2

(3 e) €12 Cg4n8 Ca478 fr.-ua{‘ == 3] 2 eygra frasn €1570 CLoBe!

L E1579 81580 Doy Cuprp |i

VEroro Blesn  €1689 1670 |

31) = £36 €74 CN\;;IE;4 =
i owe set (0

(4a) '{)‘ t;;y;F = Cugyd fug Cay Fud €8y Cad Epdy

then on\:{ﬁﬁltiplying (3b) by eis 10 Con €0 Cya o a9 Eao oo it

becomeq

(3b\) -D2390 DI 490 1 =+ DSIQU Dﬂégl] + -D].290 ])31‘)0 - 0

\{[‘he system of relatioms of this type shows that the Dy are
the determinants formed from the codrdinates of four points
i, pjy e, pr Of a set Pl in space. TIn (4a) the significant
factor of Dyg,s 18 eugg—the coplanar condition—and the
other faciors correspond to coincidences among the points
of Pj. 'These latter factors are more easily handled in
certain combinations introduced by Schottky as follows:

(‘111) e == H(ﬁ’a’ﬁ)ﬂ Cu — IIﬁ(evﬂs) '(.fg’ 8= 1’ z Ceny 9' 0)’
(4(3) Et.‘c e If'e(t; jcc;i’ — c.‘s}{ g;?_?!’j(? 6{"13
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-7
ot

The relations, (3a), .-, (3f) then become

i ! i [ 3 .
(3a') 8 S Ji6 Daary Dugen Dy =
(Sbf) 2; ,‘L‘ D;a__wu I)[_mo == ()

1

= for Sos Jor Sos Disow Do

(8¢ R _
) _ & ?‘.}5:;_3_4 gfi4 Dyvs Dhgy fro Disse Dygoy _ ¢
56 88 o Dasso Dars fos Danse Dags A\
' SR : - . LM
(Sd ) -‘:1 -+ £1 fi.j ])1_155 1)147.'_{ D.[d!}l) = 0; ;\:}
gkt
4o SLEESESE e g A%
(31 TG E SRS s s i Dl!‘“'\"\.’

. IiDlms Dhase  Disge Pisne i QO

ii}lﬁiﬂ Dlﬁlii} DIGSQ Dl{&(ﬂ:l .
The rather complicated transcriptiorgub}f"(3e) s omitied.
The right member of {3f') equa;’ctz‘d‘:tn zern is the condition
that, of the points Pg defined by BV, s, Pos Pry s> Pos Po
are on a quadric “eoWe BRI o ip, . If this member
is designated by gweq théte follows from the valnes in the
left members of (3{) \tﬁat

{4) 145,92 Ghzh P51 = Gy Jass2 frass-
&

This equation.}{i.@es not eontain the codrdinates of py. s
and iy of @¢bree 6 in each of the other eight points. By
comparisc\j‘g\ﬁrith 47 (3a) it is the condition that the eight
points\\mity be the nodes of an azygetic 8-nodal surface
whe;ﬁce P2 is the set of ten nodes of an azygetic 10-nodal

. uartic swrface.

\3" In the terms of (3d") replace the point p; with index 1
by variable z. The terms then are of the form

(5) Cij i = Dty Dt Dopsmn (& on =20, 9, 0).
This is n enbic cone with vertex at p, and containing the
lines from py to Ps, -« Yo, Po- A Set of four linearly in-
dependent cones of this character can be obtained by making

four proper selections of ¢j, ki, mn from the indices 3, ---, 9, 0.

Let y, cv vy Mj o vn; gy ooy Ha bE four proper selections. If



276 VvI. THETA RELATIONS OF GENUS FOUR

F () ig any ecnbic cone with vertex at py and on pa, ooy g e
as well as on pe, 4y, then F(x) will have an equation of
the form,
l"(ﬁ.') == i CEd kL ("] — e i Ci g tighy oy ) (.
"Then
l‘i’j; 1 .F(jh) - '53/_11 I _1”'_’..:] - E:fu F(jisi) )

since the coefficient of /£y (5 - 1,...,4) vanishes due 16\

(3d"). But the %'s were s0 cliosen that F{py) - 0 @nd
F(py) = 0 whenee also F(p) = 0. Thus the cubig»”r;g.nms
with vertex at p, and on gz, g, Pay -5 P o AIC PN also,
or I’y has the property that the nine lines fl‘{m"f;}}lll: point
to the remaining points are the base ]incs\o,'r_‘ a peneil of
cubie cones. D

We have seen (cf. 53) that the h\-'o’g.ihmetric properties
of Pjp thus deduced by Schottky (% ppd286 87) imply that
Py is the nodal set of \é}‘w(;ﬂﬁ:‘i*&ﬁi‘ﬂi@?té{f‘éqn There [oHows
also from (4a) that the e and}'[?rgﬂ},; constitute the 255 dix-
eriminant factors of the symmétroid (53 (12)). The identity
of further discriminant c‘m{ditions on PP with these (as ex-
pressed in 53 {14)) ist iif'ille first case an immediate con-
sequence of the cubis,cone property of Ply; and in the second
case s read oft a€pnce from (3f). Hence
(6) The nodal sebPly of the symmetroid, whose donble rulins

are r!ej%{c}:?)y the theta modvlar firnclions

™\

2 &
Dlﬂrﬁﬁ'f)zuﬁf})mxﬁ Disgs = eiuss 1246 Cas C15/¢10u6 €105 B30 s
A

\?3‘: transformed into a set P congruent to Pio under vequiar
Cremona transformalion when the moduli are subjected to
@ period transformation.

For the argument used in conncetion with 57 (15) can be
applied in precisely the same way to show that the effcct
of the eubic transformation d;.5, and the period transforma-
tion J sy, upon these double ratios is the same.

60. The tritangent planes of the space sextic of
genus four. We may regard the 120 tritangent planes of G4
as satisfactorily determined if a geometric eonfiguration can

Q"
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be given in terms of whose elements each of the planes is
rationally known. Thus the eight points of P; when individu-
ally given serve as a basis for the rational representation
of G on a gquadric cone A4 and of the individual tritangent
planes of e (cf. 51, 58). The various contact gystems defined
by groups of tritangent planes are then also rationally known.
The nodal set P of a symmetroid should play a similay
part for the general s, Let us ecompare the behavioreof’
this set with that of the analogous set B of base poidts of
a net of quadrics in connection with the determinationiof the
bitangents of a guartic curve. Both P} and Plse are special
sets with projective peenliarities which caugeNgértain of the
points to remain fixed under Cremona transfedmation defined
by the others. Each set is congruent to ‘only a finite number
(36 and 2%.5]1 respectively) of prqjgc.t%ely distincet sets of

similar character under regular, Grémona transformation.
Under such transformgﬁ@gg%g{,@j;;‘ﬁgg@ Jistinct types with
ordered points are permuted &ecording to a finite group g,
isomorphic with the modular group (p == 3,4). The dis-
eriminant conditions of {each set are finite in number and are
permuted like the .{?\If‘ ‘periods under gp. In each case the
number of projectively distinct types congruent to each other
is the number &f basis configurations of half periods. Most
significant 0(&11 is the fact that the cosrdinates of the pu‘ints
of each setcan be expressed in terms of modular functions
and tiat rom one set thus determined the sets congruent
to if f’under Cremona transformation arise by period trans-

Adrpiation of the moduli.
"The analogy fails in one important respect. When the
base paints, P, of the net are given there is determined in

space a Curve, Gg, of genus three, the locus of nodes of the
net, in birational correspondence with the normal planar

quartic, such that any pair of points of Piis on a pisecant.
of G which cuts G2 in the pair of eontacts of a bitangent
of the guartic. The discriminant conditions of' the set Py are
precisely the discriminant tactors of the guartic curve. Thus

far the geometric investigation of the symmetreid and Its

Q)
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nodal set _I’fo has failed to disclose an :l]g‘i\bl'uic curye of
genus four, G5, with the property that a triad of I will
rationally isnlate on & a trind of points which correspond on
the normal G5 to the triad of contnets of a tritangent plane;
or with the equivalent property that if a diseriminant con-
dition on £ is satisfied the genus of €5 will be rednced tog
three, In Othf‘l worids Schottky's devivation ot the {*Ou—
figuration 7% of the symmetroid from the abelian nmq':ﬂm
funetions is not supplemented by an exemplar of the algebraie
enrve which defines the functions. R N

That a curve 65, projectively related to thg;{g:\-'inmetroid,
exists is not to be doubted. It should lw'k'ﬁ n}mottimlh«
velated either to Pry, or to auy 47 cunt(uqu in Py, sinee
uniquely determines the tenth node. Tt jz Aot necessary that thc
% attached to P should be transformed by mgulal Cremona
transformation into the ¢ :ltta(-hed To a set 4 eongruent
to P under such tra‘l’l‘%’fﬁﬂﬁ‘i%&hfm’l’lﬂrgfm is merely 1o be
birationally equivalent to (:1.,"1‘111:; for t\\dmple 1= the behavior
of the envelope E* defined b\' its Aronhold set of seven
nodes, £7, ¢ o)

One of the main Parposes of this book has been to indicate

the richness and ¥aviety of the analytic, algebraie, and geo-
metric domain wathin which such o cmrve may be found,
Another desideratum of like character is the algebraic curve
of genugMivé with isolated even theta characteristic whose
modulat\group appears in connection with the modal 7% of
amp,l‘ziﬁai* rational sextic.
\anm the applications made herein of congrucnce under
Cremoua transformation it might Le inferred that such ap-
plications arc restrieted in the planc to curves of order 3+
with r-fold points, in space to surfaces of order 23 with
r-fold points, cte. I this were true the number of scts with
interesting connections would be small. It may well be, how-
ever, that the method cited at the elose of 56 will provide
series which behave like curves of order 3+ with as many
r-fold points as we please.
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